Proof without words:
Knopp series for π

Ángel Plaza

There are many expressions for number π as infinite series or infinite product (see for example [1, 2, 3]). In [1] the following series for number π is attributed to K. Knopp:

$$\frac{\pi}{4} = \sum_{k=1}^{\infty} \arctan \left(\frac{1}{k^2 + k + 1} \right)$$

Note that in this formula, transcendent number π is represented as the infinite sum of transcendent numbers. However a simple visual proof is provided here.
\[\alpha_k = A_{k+1} - A_k \Rightarrow \tan \alpha_k = \frac{k+1-k}{1+(k+1)k} = \frac{1}{k^2+k+1} \]

References

ÁNGEL PLAZA
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF LAS PALMAS DE GRAN CANARIA
EDIFICIO DE INFORMÁTICA Y MATEMÁTICAS
35017–LAS PALMAS DE GRAN CANARIA
SPAIN
E-mail: aplaza@dmat.ulpgc.es

(Received July, 2006)