“porkolab” — 2007/8/10 — 12:03 — page 171 — #1

5/1 (2007), 171-182 Teaching
tmcs@inf.unideb.hu Mathematic§ and
http://tmcs.math.kite.hu Computer Science

Teaching multiparadigm
programming based on
object-oriented experiences

ZOLTAN PORKOLAB and VIKTORIA ZSOK

Abstract. Multiparadigm programming is an emerging practice in computer technology.
Co-existence of object-oriented, generic and functional techniques can better handle
variability of projects. The present paper gives an overview of teaching multiparadigm
programming approach through typical language concepts, tools in higher education.
Students learning multiparadigm-oriented subjects would gain considerable expertise,
which is highly needed by the industrial side in large-scale application development.

Key words and phrases: programming paradigms, teaching multiparadigm program-
ming.

ZDM Subject Classification: B40, D40, P40, P50.

1. Introduction

In the software development process abstractions play a central role. An
abstraction focuses on the essence of a problem and excludes the special details [6].
Abstractions depend on many factors: user requirements, technical environment,
and the key design decisions. In software technology a paradigm represents the
directives in creating abstractions. The notion of paradigm is widely discussed
in [15]. The paradigm is the principle by which a problem can be comprehended
and decomposed into manageable components [5].

There are several questions regarding abstractions and components. What
types of categories can be established when the components are identified? What
types of entities can be created and how? What should be created: procedures or

Copyright (© 2007 by University of Debrecen



“porkolab” — 2007/8/10 — 12:03 — page 172 — #2

172 Zoltan Porkolab and Viktoria Zsék

cooperating objects? Where are the boundaries between modules? What types
of rules should be applied in composing abstractions? In practice a paradigm
directs us in identifying the elements in which a problem will be decomposed and
projected. The paradigm sets up the rules and properties, but also offers tools
for developing applications.

Software development is fundamentally a human activity. Today it is largely
supported by automated tools, but still considerably influenced by personal ex-
periences, traditions, conventions and customs. These behavioural patterns have
huge impact upon the software development process by determining the way pro-
grammers form abstractions. Many of these human factors are formed by higher
education. The first programming language, abstraction methods, and practiced
paradigms are imprinted in computer science students. Techniques and practices
acquired in an early period tend to return later, even if the current problem would
require a different approach. These impediments may hinder the programmers
from producing outputs in the expected time frame and quality.

One possible solution is to prepare students to identify the nature of the
problem to be solved and consciously choose the best-fitting tools and tech-
niques. It is especially important to teach how different kinds of problems could
be targeted using appropriate paradigms. Since complex problems usually have
a multi-dimensional nature, in most cases they require multiparadigm approach
researches.

2. Programming paradigms

The very first goal in computer science was the automation of computations.
Computations which could not be executed by human resources were calculated
automatically by a machine, therefore this effort was called automatic program-
ming. Although at the beginning the hardware was unreliable and the software
technology tools were rudimentary, the problems were still manageable at the
expense of the paradigm subordinated to the hardware restrictions. The typical
programming language was FORTRAN, which gained huge popularity despite its
well known weaknesses, since the language provided high compilation efficiency:
on average 10 machine code statements were generated from 9 FORTRAN com-
mands, which was of major importance.

Since the hardware became cheaper and more reliable, the software archi-
tecture gained more importance in applicability, maintenance and innovation.



“porkolab” — 2007/8/10 — 12:03 — page 173 — #3

Teaching multiparadigm programming based on object-oriented experiences 173

Earlier language constructs (like the infamous backward GO TO) were soon con-
sidered harmful [8]. Structured programming [7] prescribed sequences, branches,
loops, procedures and emphasised the description of the adequate algorithm. In
the second wave of imperative languages the attention was focused on data ab-
straction. Languages, like Pascal and their successors have sophisticated data
abstraction constructs like enumeration, and features like strong typing, generics,
tasks, exception handling, packages.

Object-orientation is evolved from block-structured languages. The Simula
language introduced the first steps towards object-oriented programming and let
a new paradigm appear. The object-oriented paradigm is based on identifying
adequate data structures and methods upon them using the encapsulation prin-
ciple. The languages supporting object-oriented programming contain special
language constructs. Classes describe the objects with the same data structures
and methods. Inheritance offers the possibility of building a hierarchy between
similar classes, thus expressing the relationship between them.

The main feature of the object-oriented paradigm is the strong unity between
data structures and methods inside a class, and the loose liaisons with other
classes. The repeated features of similar classes (with similar data structures,
behaviours and importance) can be grouped into a base class by generalisation.
It is also possible to create new classes by specialisation. This can be achieved
by extending the data structure and changing the behaviour of the base class
by adding new methods. The obtained class hierarchy enables the definition of
every important element of the program exactly one time facilitating further de-
velopments and code maintenance. Object-oriented programming is supported by
strongly typed languages. These languages explore the polymorphic possibilities
of dynamic linking during the run-time. The security of a construction is checked
during compile-time. Class hierarchy is also a good design choice to express sub-
type relationships. According to the Liskov substitution principle [17] an object of
type T could be substituted by an object of any subtype of T. However, subtyping
and subclassing may diverge.

3. Multiparadigm programming

The object-oriented programming methodology is an extensively researched
area, and at the same time it is the most widely used paradigm in the indus-
try. In the early stage of the paradigm there were high expectations that the
code written using the object-oriented paradigm would be shorter, clearer and



“porkolab” — 2007/8/10 — 12:03 — page 174 — #4

174 Zoltan Porkolab and Viktoria Zsék

more maintainable. Although these great expectations where not baseless, and
object-orientation proved to be effective in many cases, we experienced a number
of its deficiencies. Problems with crosscutting concerns, and multidimensional
separation of concerns [2] arise at design stage. Shortage of symmetric exten-
sibility of class hierarchies — as described in the infamous expression problem
[3, 21] blocks the development of effective extensible class libraries. Undeniably
the object-oriented implementation techniques still cause efficiency problems.

As one can observe, in the past there was a paradigm turnout in about every
20 years. The turnout occurred every time when the size and the complexity of
typical high-end applications exceeded the manageable extent of the older par-
adigm. Currently there are again many signs of a new paradigm turnout. The
aspect-oriented programming [14] is already used in the industry to answer for the
problems of crosscutting concerns and dangling code. The appearance of generic
programming [1] to solve the expression problem is concretised in professional
programs by the use of the C++ Standard Template Library.

Functional programming had a great history since LISP language, now we can
experience a new renaissance. The ML language is an impure functional language,
since it contains imperative elements (e.g. let statements). The ML dialects
have introduced several language elements from the object-oriented programming
paradigm. The Objective CaML dialect is based on the notion of objects, classes,
class hierarchy, inheritance. JoCaML is an extension of the Object CaML for
distributed, concurrent and mobile programming [9].

It is important to stress that a new paradigm does not completely replace
the old one, but rather forms a new code organisation method above the old
one. When object-orientation became popular, we did not disavow structured
programming at all, we just introduced classes and inheritance hierarchy as a
new way to organise the source code. Methods are still implemented according
to the structural paradigm.

4. Teaching programming paradigms

Since the work of Dahl, Dijkstra, and Hoare, structured programming was
the taught paradigm for undergraduate students. Naturally, the first program-
ming language to be taught was a choice of Pascal, Modula (or Modula2), and C.
Object-orientation introduced, sometimes optionally, for graduate students with
the help of languages, like Simula67, and Smalltalk, was built on the experi-
ences students received previously via structural languages. That approach let



“porkolab” — 2007/8/10 — 12:03 — page 175 — #b5

Teaching multiparadigm programming based on object-oriented experiences 175

the students learn structural programming and gradually acquire object-oriented
principles.

Nowadays the focus is trended towards introducing object-oriented program-
ming as the first paradigm. This is partly a result of the pressure coming from
industry, wanting production ready programmers as soon as possible. The present
first language is therefore either C# or Java (sometimes C++), which enables
students to learn objects early, but having the danger to give the misleading
suggestion that object-orientation is the only paradigm on stage.

Our approach is different. From the very beginning of the curricula we try
to provide the students with the experiences of naturally coexisting programming
paradigms. Our choice for the first programming language is C++, a multi-
paradigm language with well-separated procedural, object-oriented and generic
features. Early codes are written in structured way. Writing a hello world pro-
gram does not require the introduction of output stream objects, etc... Later,
objects are introduced naturally, when more complex programs require their own
data structures. Students can also accumulate generic programming knowledge
by extensive use of the Standard Template Library.

Functional programming is another challenge to the first language to be
taught. Since modern functional programming style is very close to the math-
ematical way of thinking, it is quite often proposed as the first paradigm for
students. We do not follow this direction, however, some functional style solu-
tion is used in early C++ examples. Recursion is practiced from the beginning,
and higher order functions are introduced in connection with Standard Template
Library function objects. Our students are provided with larger mathematical
foundations (about 30 percentages of all the credits in B.Sc.) than the average
practice in computer science education. Therefore they are more receptive for the
functional paradigm.

As mentioned earlier, the new paradigms can easily coexist with the older
ones. We will illustrate this by the properties of the constructive interaction of
several pairs of paradigms. Aspect oriented programming has the same basic
structure as the object oriented one. The aspects decrease the code repetition
inside classes and improve the modularity of a program. The paradigm is more
efficient in following the positive and negative changes. Generic programming
also gathers principles from the object-oriented style. It has several common ba-
sic constructs like abstract datatypes, classes, functors. Functional programming
also presents similarities with object-oriented programming. It provides abstract



“porkolab” — 2007/8/10 — 12:03 — page 176 — #6

176 Zoltan Porkolab and Viktoria Zsék

datatypes, classes, encapsulation, subtyping, basic structures. The generic para-
digm also coexists with functional programming. The Standard Template Library
provides functions, which are similar to the higher order functions of the func-
tional programming style or to the functions parameterised by strategies. There
are other common concepts in the two paradigms like generic data structures and
functions, or parametrical polymorphism.

Higher education should accentuate the theoretical and practical teaching of
the already widespread new paradigms and their supporting language tools and
programming environments too. Students can deepen their knowledge-base by
acquiring new programming paradigms and styles like generative programming,
functional programming, aspect-oriented programming, logic programming. As
a result they will be able to combine all these paradigms in a creative way and
they will be able to use new tools and new technologies in their future work.
It is very important to mention that a new paradigm never sets the previously
gained programming experiences aside. Structural programming has overtaken
the notions of the earlier imperative languages. The object-oriented paradigm
does not cancel structural programming in the implementation of methods. The
alternation of paradigms incorporates all the already existing tools, methods,
experiences in a higher structural unity.

A typical example can be seen in generic programming. The generic al-
gorithms are separated from the data structure contrary to the object-oriented
principles. At the same time some data structures are implemented as template
classes with well-defined public interfaces and private implementations. However
even some algorithms appear as classes (functors). The aspect-oriented paradigm
uses in the same way the notion of aspects, since aspects are very closely related
to classes. Generative programming and object-oriented programming can safely
work together using mizin [20] technique.

template <typename T1, typename T2>
class Mixin : public T1, public T2 { ... };

A mixin type inherits from their own template parameter, therefore it can
export the public interface of the parameter type. This makes the construct
extremely useful when components must be assembled automatically [2, 24].

There are a number of examples linking the generative and the functional
paradigm. The boost: :bind library [13] implements full functional programming
environment in the compilation time of C++ programs. It supports arbitrary
function objects, functions, function pointers, and member function pointers, and



“porkolab” — 2007/8/10 — 12:03 — page 177 — #7

Teaching multiparadigm programming based on object-oriented experiences 177

is able to bind any argument to a specific value or route input arguments into
arbitrary positions.

Functional programming is a paradigm that treats computations as evalua-
tion of mathematical functions, so it is very appropriate to the mathematical ways
of thinking. First-year students enter the university with a large mathematical
knowledge, for this reason functional programming is appropriate for the first pro-
gramming paradigm to be presented in the university curricula. The theoretical
background of functional languages can form the thematic of more courses, which
can be of lambda calculus, compiler construction, etc. Theoretical knowledge is
indispensable for further researches or further compiler developments.

Special courses integrate the teaching of functional programming with com-
mercial languages (e.g. Common LISP). Others combine the teaching of func-
tional program design with modern object-oriented languages like C++4, Java,
Pizza. Some courses introduce the functional style in pedagogical programming
environments, where this paradigm is used for implementation of programs with
pedagogical relevance.

More advanced topics can form the subject of special courses, even a com-
plete subject curricula can be formed out of these. Here we enumerate several
advanced topics with their main issues. Special advanced compiler construction
courses present the extensions and libraries of the modern functional languages
like Haskell or Clean, where tracing, debugging, heap profiling are studied. Issues
like combinator libraries, parsing libraries and grammar analysis are even more
advanced concepts. Other types of special courses are formed at the boundaries of
different informatics subjects (for example type-safe database handling in Haskell
DB). Games and animations are developed as functional reactive animations in
the framework of several computer science practical courses. There are several
theoremproving tools developed in functional programming languages which form
the subject of logic-oriented courses.

Patterns and skeletons are seen in monadic or in ObjectIO special program-
ming courses, where arrows, meta programming (Template Haskell), advanced
type classes (with multi-parameter, functional dependencies), abstract data struc-
tures are also studied. Higher order functional programming based on skeletons
and evaluation strategies can solve high complexity problems and also distributed
computations in GRID systems. Nevertheless, it is quite prevailing to use com-
plementary paradigms in developing programs for multiparadigm based systems
in distributed environments [11].



“porkolab” — 2007/8/10 — 12:03 — page 178 — #8

178 Zoltan Porkolab and Viktoria Zsék

Since we introduced the multiparadigm-based education approach described
above, we receive continously positive feed-back from the industry. Multinational
software companies, like NOKIA, Siemens, Ericsson, as well as research institutes
show growing interest for our graduated students. For instance, the number of our
graduated students employed by Nokia Hungary Ltd. is increased by 45 percent
in this period. These graduated students were hired mainly in those areas which
require specific multiparadigm knowledge, i.e. generative programming skills (in
NOKIA), and functional language skills (Ericsson) [16].

Students also recognised the importance of these fields. On M.Sc. level they
likely choose subjects related to multiparadigm knowledge, like Advanced C++
on generative programming and Functional programming.

5. When OO and other paradigms are contradictory

There are a few important situations where teaching generative program-
ming requires extreme care since the rules contradict the usual object-oriented
experiences.

One such situation is the handling of subtype relationships between paramet-
ric types. According to the Liskov substitution principle [17] an object of type
T could be substituted by an object of any subtype of T. In pure object-oriented
languages subtyping is often implemented using subclasses. This does not work
with parametric types.

class Base { ... };

class Derived : public Base { ... };
template <typename T> class Gen { ... };
Gen<Base> gb;

Gen<Derived> gd;

In the above example Derived is a subtype of Base, but this does not hold
for Gen<Derived> and Gen<Base>. Type parameters are invariants for subtype
relationships. This, otherwise logical, rule often makes problem for students who
are unexperienced in generative programming.

It is interesting, that the similar situation involving arrays are not handled
in such a consistent way. Both Java and C++ allows the polymorphic usage of
arrays, i.e. arrays are covariant constructions. The result in both languages are
the loss of static type checking possibilities.



“porkolab” — 2007/8/10 — 12:03 — page 179 — #9

Teaching multiparadigm programming based on object-oriented experiences 179

6. Related work

Research of multiparadigm programming has a long history. In 1986 IEEE
published a special issue on multiparadigm programming [10].

The [23] paper discusses a compositional approach to multiparadigm pro-
gramming. Since “most of the experienced programmers are confined to their fa-
vorite language’s one paradigm”, the author propagates multiparadigm approach
using composition of a collection of single-paradigm programs.

An opposite opinion can be found in [22]. The paper describes that “most
programming languages courses have students use several distinct languages to
gain experience with different language paradigms and implementation issues”.
This practice gives some real experience in a number of languages, but the time
spent on learning new languages and environments necessarily reduces the capa-
bilities to learn the new paradigm itself. Therefore the author argue for using a
single multiparadigm programming language, called GED. GED supports the im-
perative, functional, logic, and object-oriented paradigm. Experiences with GED
are described in [19]. G language, the predecessor of GED is reviewed in [18].

One of the most referred multiparadigm programming language is the LEDA
language [4]. LEDA is a general purpose language, which was designed both as
a research tool and as a teaching environment. The language is based on im-
perative and object-oriented features, like assignment, class definition and single
inheritance with polymorphism. For functional programming LEDA implements
functions as first-class values including their dynamic creation capturing actual
environment. Logic programming is supported via relations — data types allow-
ing definitions of facts and inference rules. LEDA is a statically checked, strongly
typed programming language which realized a larger set of paradigms, but it is
still considerably smaller than C++.

Multiparadigm software design and its implementation in the C4++ program-
ming language are deeply investigated by James Coplien [6]. One of his most
important conclusions is that different kind of domain problems should be tar-
geted using different programming paradigms. The domain analysis, especially
identifying positive and negative variability, helps to select the most appropriate
paradigm.



“porkolab” — 2007/8/10 — 12:03 — page 180 — #10

180 Zoltan Porkolab and Viktoria Zsék

7. Conclusion

The evolution of paradigms involves the evolution of teaching methodologies,
tools, programming languages and environments. The academic and the indus-
trial research provide the future challenges for the higher education of program-
mers. The new paradigms can coexist quite easily with the old ones producing
many new valuable properties. The multiparadigm environments and tools give
the opportunity to use more programming styles inside one application and to
experience the multi-faceted property of one programming construct or feature.

The higher education of computer science has great responsibilities in prepar-
ing the programmer students when responds to the challenges provided by the in-
dustrial side. This involves the teaching of all those new technologies, paradigms,
languages, tools which are not yet widely used in industry, but they have already
proved their applicability. However, the new technologies, paradigms are not
against the currently widely used ones. The new issues reflect the boundaries of
the older ones and they enable a deeper understanding and applicability of them.
Teachers continually adjust their lectures to the new technology requirements.
The efforts for developing new topics according to the state-of-the-art will be
exploited by the students in their future work.

References

[1] M. H. Austern, Generic Programming and the STL, Addison-Wesley, 1999.

[2] L. Bergmans, M. Aksit, Composing Crosscutting Concerns Using Composition Fil-
ters, Communications of the ACM 44, no. 10 (2001), 51-57.

[3] K. B. Bruce, Some challenging typing issues in object-oriented languages, in: Elec-
tronic Notes in Theoretical Comp. Sci., Vol. 82, (V. Bono and M. Bugliesi, eds.),
Elsevier, 2003.

[4] T. A. Budd, T. P. Justice, R. K. Pandey, General-purpose multiparadigm pro-
gramming languages: an enabling technology for constructing complex systems,
First IEEE International Conference on Engineering of Complex Computer Sys-
tems (1995), 334-337.

[5] L. Cardelli, P. Wegner, On Understanding Types, Data Abstraction, and Polymor-
phism, ACM Computing Surveys 17, no. 4 (1985), 471-522.

[6] J. O. Coplien, Multi-Paradigm Design for C++, Addison-Wesley, 1998.

[7] O.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare, Structured Programming, Academic
Press, 1972.



“porkolab” — 2007/8/10 — 12:03 — page 181 — #11

Teaching multiparadigm programming based on object-oriented experiences 181

8]

[13]

[14]

E. W. Dijkstra, Go To Statement Considered Harmful, ACM 11, no. 2 (1968),
147-148.

C. Fournet, F. Le Fessant, L. Maranget, A. Schmitt, The JoCaml language beta
release, Documentation and user’s manual, INRIA, 2001.

B. Hailpern (ed.), Special issue on Multiparadigm Languages and Environments,
IEEE Software 3, no. 1 (1986), 6-77.

7. Horvath, V. Zsok, P. Serrarens, R. Plasmeijer, Parallel Elementwise Processing
in Concurrent Clean, Mathematical and Computer Modelling 38, Elsevier (2003),
865-875.

P. Hudak, S. Peyton Jones, Ph. Wadler, B. Boutel, J. Fairbairn, J. Fasel, K. Ham-
mond, J. Hughes, Th. Johnsson, D. Kieburtz, R. Nikhil, W. Partain, J. Peterson,
Report on the Programming Language Haskell, ACM SigPlan Notices 27, no. 5
(1992), 1-164.

B. Karlsson, Beyond the C++ Standard Library: An Introduction to Boost, Addison
Wesley Professional, 2005.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
J. Irwin, Aspect-Oriented Programming, Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), Finland, Springer-Verlag, LNCS 1241,
(1997), 220-242.

T. S. Kuhn, The Structure of Scientific Revolutions, 3°? ed., Univ. of Chicago Press,
Chicago and London, 1996.

J. Kurtz and Z. Porkoldb, Cooperative Work and Learning, Proceedings of Inter-
national Technology, Education, and Development Conference (INTED 2007), Va-
lencia, Spain (2007).

B. Liskov and J. M. Wing, A Behavioral Notion of Subtyping, ACM Transactions
on Programming Languages and Systems (TOPLAS) 16, no. 6 (1994), 1811-1841.
J. Placer, The Multiparadigm Language G, Computer Languages 16, no. 3—4 (1991),
235-258.

J. Placer, The Promise of Multiparadigm Languages as Pedagogical Tools, Proceed-
ings of the ACM conference on Comp. Sci. (1993), 81-86.

Y. Smaragdakis, D. S. Batory, Mixin-Based Programming in C++, in: Proceedings
of Net. Object Days, 2000, 464-478.

P. Wadler, The expression problem, Posted on the Java Genericity mailing list,
1998.

D. S. Westbrook, A Multiparadigm Language Approach to Teaching Principles
of Programming Languages, 29" ASEE/IEEE Frontiers in Education Conference
(1999), 11b3-14.

P. Zave, A Compositional Approach to Multiparadigm Programming, IEEE Soft-
ware VI, no. 5 (1989), 15-25.

1. Z6lyomi, Z. Porkoladb, An extension to the subtype relationship in C++ imple-
mented with template metaprogramming, Proceedings of GPCE 2003, Springer-Ver-
lag, LNCS 2830 (2003), 209-227.



“porkolab” — 2007/8/10 — 12:03 — page 182 — #12

182 Z. Porkolab and V. Zsék : Teaching multiparadigm programming

ZOLTAN PORKOLAB and VIKTORIA ZSOK

EOTVOS LORAND UNIVERSITY

FACULTY OF INFORMATICS

DEPARTMENT OF PROGRAMMING LANGUAGES AND COMPILERS
H-1117 BUDAPEST

PAZMANY PETER SETANY 1/C

HUNGARY

E-mail: gsd@elte.hu

E-mail: zsv@inf.elte.hu

(Received February, 2007)



