
“tmcs-KATAI˙et˙al” — 2011/5/14 — 0:19 — page 107 — #1

9/1 (2011), 107–116

Cultivating algorithmic thinking: an

important issue for both technical

and HUMAN sciences

Zoltán Kátai, Lehel István Kovács, Zoltán Kása, Gyöngyvér

Márton, Kinga Fogarasi and Ferenc Fogarasi

Abstract. Algorithmic thinking is a valuable skill that all people should master. In this
paper we propose a one-semester, algorithm-oriented computer science course for human
science students. According to our experience such an initiative could succeed only if the
next recipe is followed: interesting and practical content + exciting didactical methods
+ minimal programming. More explicitly, we suggest: (1) A special, simple, minimal,
pseudo-code like imperative programming language that integrates a graphic library. (2)
Interesting, practical and problem-oriented content with philosophical implications. (3)
Exciting, human science related didactical methods including art-based, inter-cultural
elements.

Key words and phrases: Algorithmic thinking, teaching learning programming, multi-
sensory education, intercultural education, curriculum.

ZDM Subject Classification: B50, B70, U60,U80.

1. The importance of cultivating algorithmic thinking for all

students

An algorithm is a precise, step-by-step set of instructions for solving a task.

An algorithm does not solve a task, it rather gives us a series of steps that, if

executed correctly, will result in a solution to a task. All people use algorithms

Acknowledgment: The elaboration of the didactical tool that integrates the “sorting-dance

performances” (Algo-rythmics project) was supported by “Szülőföldalap”.

Copyright c© 2011 by University of Debrecen



“tmcs-KATAI˙et˙al” — 2011/5/14 — 0:19 — page 108 — #2

108 Z. Kátai, L. I. Kovács, Z. Kása, Gy. Márton, K. Fogarasi and F. Fogarasi

every day but they often do not explicitly think about the individual steps of

the algorithm. Algorithmic thinking is the ability to understand, execute, eval-

uate, and create algorithms. According to Futschek [3] algorithmic thinking is a

valuable skill that all people should master.

In all fields of science efficiency presupposes developed modeling skills. While

engineers are modeling physical processes, human sciences are concerned with the

modeling of social phenomena. In the course of modeling we create entities out of

real objects by abstraction. The human mind observes, abstracts, differentiates

and systematizes the objects or real entities it is surrounded by. The supreme goal

is to arrive at an understanding of how the complex system works. The means

to achieve this is modeling. Modeling is but the use of a basic and elementary

train of thought (an algorithm) which human beings are capable of abstracting,

differentiating, categorizing, generalizing or specifying, analyzing as well as es-

tablishing relations. Cultivating algorithmic thinking students also develop their

modeling skills.

Any device can be used more efficiently if it is clear how it works. Under-

standing the principles behind computer sciences (and related fields of science)

results in more qualified computer users. For example, since the two thousand

years old Euclid algorithm is a basic pillar of today’s data security, teachers can

use it as a starting point to explain practical aspects of cryptography and com-

putational complexity: why it is hard to decipher somebody’s password, how we

can send confidential letters, what lies behind banking transactions, etc.

On the other hand, the huge amount of computation that can be done with

computers has resulted in new ways of thinking about proving something, be-

ing certain of something etc. The philosophical aspects of these issues represent

further reasons why human science students should be initiated into computer

sciences. This train of thought reminds us of the polyhistors of the past who had

a wide range of knowledge, and it raises the question if nowadays scientists should

not be such as they were (at least in matter of principles).

Accordingly, in this paper we propose a one-semester, algorithm-oriented

computer science course for human science students.



“tmcs-KATAI˙et˙al” — 2011/5/14 — 0:19 — page 109 — #3

Cultivating algorithmic thinking: an important issue. . . 109

2. Promoting algorithmic thinking by teaching-learning

programming

Creating algorithms without implementing them could be a frustrating task.

Experiencing that the algorithm we have just created works is an encouraging

feeling. Computers are undisputedly the most effective educational tools for im-

plementing algorithms. However, this means computer programming. Although,

obviously, most of the human science students will not become programmers, basic

algorithm-related elements of the computer sciences can improve their algorith-

mic thinking. (Human scientists regularly use word-processors and spreadsheet

applications that support macros, and creating macros implies programming)

According to our experience such an initiative could succeed only if the next

recipe is followed: interesting and practical content + exciting didactical methods

+ minimal programming. More explicitly, we suggest: (1) A special, simple, mini-

mal, pseudo-code like imperative programming language that integrates a graphic

library. (2) Interesting, practical and problem-oriented content with philosophical

implications. (3) Exciting, human science related didactical methods including

art-based, inter-cultural elements.

2.1. The proposed syllabus

According to the USA National Research Council’s Committee on Informa-

tion Technology Literacy the general concept of algorithmic thinking includes

functional decomposition, repetition (iteration and/or recursion), basic data orga-

nizations, generalization and parameterization, algorithm vs. program, top-down

design, and refinement etc. [9] In line with this we propose the following minimal

syllabus:

• Introduction (1st week)

◦ The concept of variable (we prefer the notion of storage as denomina-

tion instead of variable). To avoid the concept of type, all variables

are integers. As data structures, we introduced only the one- and two-

dimensional arrays.

• Elementary algorithms

◦ Interchanging the content of two storages (with or without the use of a

third storage). (2rd week)

� Assignment statement; simplified input/output operations; ex-

pressions (basic operators)



“tmcs-KATAI˙et˙al” — 2011/5/14 — 0:19 — page 110 — #4

110 Z. Kátai, L. I. Kovács, Z. Kása, Gy. Márton, K. Fogarasi and F. Fogarasi

◦ Decision-structures. (3rd week)

� if [else] statement. (Parallel scenarios)

◦ Iterative algorithms (Loop-instructions: while, for)

� Searching algorithms (linear/binary) (4th week)

� The Euclidian algorithm. (Data security: basic concepts) (5th

week)

� Sorting algorithms (insert-, bubble-, shell- and select-sort) (6th

week)

• Imbricated loop-structures

� The concept of algorithm-complexity

• Subprograms (Top-down algorithm design strategy) (7th week)

◦ Global/local storages

◦ Parameter passing by value/reference

• Recursive algorithms (8–9th week)

◦ Recursion in nature, arts and literature

• Algorithm design strategies (classic examples)

◦ Greedy strategy (“Job sequencing with deadlines” problem) (10th week)

� Greedy heuristic

◦ Backtracking strategy (“Queens” problem) (11th week)

◦ Divide and conquer strategy (“Towers of Hanoi” problem) (12th week)

◦ Dynamic programming (13th week)

◦ Comparing analyze of the strategies (“Mouse in the maze” problem)

(14th week)

� Top-down vs. bottom-up strategies

� Drawing a parallel between algorithm design strategies and differ-

ent life philosophies.

2.2. The suggested didactical methods

Algorithmic thinking (and programming) goes hand in hand with abstract

reasoning. According to Navrat [10] a possible factor contributing to students’

difficulties in learning to program is the abstractness of the programming process.

In view of this Kátai and his colleagues [6], [7], [8] analyzed how multi-sensory or

technologically enhanced learning can be implemented in computer-programming



“tmcs-KATAI˙et˙al” — 2011/5/14 — 0:19 — page 111 — #5

Cultivating algorithmic thinking: an important issue. . . 111

education and in what ways this process can be catalyzed by arts (dance, music,

rhythm, theatrical role-playing). According to Stevens and Goldberg [14], our

brains desire multi-sensory input and learning engages the whole body. Staley

[13] emphasizes that senses do not reach only our feelings, emotions and aesthetic

sense, but our intellect as well. Technology (like computer simulation) has a key-

role in creating multi-sensory environment in classrooms.

Science and art are a winning combination in educational contexts because:

(1) It creates a multi-sensory learning environment that involves almost all senses:

visual, auditory, kinaesthetic, and tactile; (2) It contributes to a balanced in-

volvement of both sides (academic/artistic) of the brain in the classes that could

significantly improve teaching-learning process [2]; (3) It promotes various ways

of learning that also enhance the educational process [4], [5].

Illustrations and examples are powerful teaching devices, too. They often

command and hold attention with remarkable effectiveness, and stimulate the

thinking faculties. They are also an effective memory aid. In the followings we

propose a variety of multi-sensory didactical methods for almost all subjects in-

cluded in the above suggested syllabus.

2.2.1. Teaching-learning elementary algorithms

Any algorithm has a loop skeleton, its structure of loops. Teachers should

help students comprehend clearly the loop skeleton of the algorithm already in

the analyzing phase of the problem- solving process. We have developed a multi-

sensory software-tool to enhance students’ skills to identify the loop skeleton of a

certain algorithm.

The application makes it possible to create program-skeletons with differ-

ent loop structures in an automatic way: (1) giving the parameters of the loop

skeleton; (2) drumming the loop skeleton in (using the keyboard students drum

the rhythm-pattern of certain loop skeletons). On the other hand, the software

integrates piano sound and delay procedures in the nuclei of each loop instruc-

tion. This module functions as a loud speaker of the loop skeletons. When the

algorithm has loops in both branches of a selection, in these parallel loops the

software implements the same sounds but with different musical instruments.

The application makes possible the following multi-sensory learning experience:

While students are listening to the loop skeleton of the algorithm (represented

by its piano-sound sequence), they keep their eyes on the running program (the

instruction which is being executed is highlighted). [6]



“tmcs-KATAI˙et˙al” — 2011/5/14 — 0:19 — page 112 — #6

112 Z. Kátai, L. I. Kovács, Z. Kása, Gy. Márton, K. Fogarasi and F. Fogarasi

2.2.1.1 Teaching-learning searching algorithms

To help students imagine how linear/binary searching algorithms work, the

teacher should invite them to play these strategies. The teacher needs n + 2 ac-

tors (n is the length of the sequence): n students for the number-sequence, one

for the loop-variable and one for the searched value. The scenario should closely

follow the corresponding searching strategy. Whereas spectator-students get an

overview of the whole process, actor-students memorize in their muscles (kinaes-

thetic memory) specific moves associated with elementary operations related to

the algorithms. [7]

2.2.1.2 Teaching-learning sorting algorithms

We have designed a special didactical method that integrates multicultural

folk-dance performances (Romanian, Hungarian, German and Gipsy) in the teach-

ing-learning process of sorting algorithms (Insert-sort, Select-sort, Bubble-sort,

Shell-sort). The number-sequence is personified by the dancer-sequence (dancers

wear the corresponding number on their dress) (see Figure 1) [8]. We suggest the

following syllabus to implement this method:

• Students view the dance-performance that illustrates the analyzed sorting

algorithm.

• Using the segmented version of the video-recording students delimit and iden-

tify the key-operations of the algorithm.

• Students are invited to reconstruct the operation-sequence. At each step they

have to choose the next operation to be executed and identify the elements the

selected operation has to be applied on. For example, if the selected operation

is comparing, the software directs the user to click on the corresponding

dancers.

• Students are invited to repeat the reconstruction process of the algorithm on

a black-box sequence. The software informs them about the results of the

“comparing” operations.

• Teachers briefly discuss cultural aspects of dance-performances with students.

(Dance-choreographies were designed to promote both Computer Science ed-

ucation and appreciation for cultural diversity in Transylvania, Romania)

2.2.2. Top-down algorithm design strategy (sub-programs)

There are a lot of practical examples in all fields of science which can be

used as illustrations for the top-down problem-solving strategy. Additionally, if



“tmcs-KATAI˙et˙al” — 2011/5/14 — 0:19 — page 113 — #7

Cultivating algorithmic thinking: an important issue. . . 113

Figure 1. Romanian folk-dance (sub-region Bihor, Transylvania). In-
terchanging two elements

teachers present the sub-program as a scenario, then the effective parameters can

be considered as actors. In the case of the parameters passed by value the roles

are played by doublers.

2.2.3. Teaching-learning recursive algorithms

Recursion in computer science is a way of thinking about and solving prob-

lems. Solving a problem using recursion means the solution depends on solutions

to smaller instances of the same problem. When a recursive procedure/function

is called the computer keeps track of the various instances of the function. The

teacher can didactically compare these instances to a clone-population. Creating

a recursive sub-program essentially requires defining a base-case and then defin-

ing rules to break down more complex cases into the base-case. The base-case

condition is usually implemented by an if-instruction. This key-if delimits two sce-

narios for all clone-instances: the base-case-scenario and the recursive-scenario.

The current clone chooses between scenarios according to the task it received

through its parameter list.

We have developed a multimedia instrument to help students to understand

how recursion works. We have implemented successive segments from the classical

piano masterpiece, Für Elise by Ludwig von Beethoven, as accompanying music

for the execution of particular zones of the recursive scenario. Between successive



“tmcs-KATAI˙et˙al” — 2011/5/14 — 0:19 — page 114 — #8

114 Z. Kátai, L. I. Kovács, Z. Kása, Gy. Márton, K. Fogarasi and F. Fogarasi

processing levels, a constant shift is applied (on the score of pitch). For the base-

case zone we chose a different music-fragment. (see Figure 2)

Figure 2. The staircase illustration of a three level recursive call

Role-playing could be an efficient didactical tool in case of teaching learning

recursion too. (see Figure 3) [7]

Figure 3. Staging a recursive scene

2.2.4. Teaching-learning algorithm design strategies

We suggest problem-oriented methods and algorithm-animation. The prob-

lems should be chosen very carefully. According to Futschek [3] the problems to

be solved should not be too simple, and the problem statement should be easily

understandable. More complex problems give more space to creativity. With re-

spect to visualization, Shu [12] also considers programming to require both parts

of the brain, and focuses on the need to involve the artistic half -expressing the



“tmcs-KATAI˙et˙al” — 2011/5/14 — 0:19 — page 115 — #9

Cultivating algorithmic thinking: an important issue. . . 115

need to involve pictures in the process. van Dam [15] points out that 60% of our

neurons are located in the visual cortex.

3. Conclusions

The presented teaching-learning project is built on three central concepts

of the modern education: multisensory-learning, multiculturalism and interdisci-

plinarity. Some of the multi-sensory software-tools we described make it possible

for students to feel the pulse of the algorithms. They promote learning with the

whole body. More senses involved does not only mean more information, bet-

ter perception, more efficient memorizing and deeper understanding, but ensures,

also, the same chance for students with different dominant senses.

A recent report of the Council of Europe Parliamentary Assembly (Commit-

tee on Culture, Science and Education) stated that society’s need for precisely

those competences and qualities that are developed through artistic and cultural

education is greater than ever. The project illustrates how the unity-in-diversity

ideal (the European Union’s motto) can be implemented in educational context:

multicultural artistic performances promote the cause of universal science. The

method we suggest for teaching-learning sorting algorithms illustrates how arts

can be integrated in science education at all levels (scientific content in artistic

frame).

According to the suggestions of Schaffer et al. [11], the science-art combina-

tion is strongly recommended (among others) for the infusion of energy and ex-

citement that can make students more receptive to learning. They observed that

students for whom to concentrate can be difficult were very engaged in lessons

that integrated dance, and they also enjoyed it.

Integrating the presented CS course in the human sciences curricula will ex-

pectedly result in more efficient education and, consequently, in more skillful

professionals who are more prepared to face the challenges of the twenty-first

century.

References

[1] Council of Europe, Committee on Culture, Science and Education, Cultural educa-
tion: the promotion of cultural knowledge, creativity and intercultural understanding
through education, Retrieved May 3, 2010, from The Parliamentary Assembly Web
Site, 2009, http://assembly.coe.int.



“tmcs-KATAI˙et˙al” — 2011/5/14 — 0:19 — page 116 — #10

116 Zoltán Kátai et al. : Cultivating algorithmic thinking: an important issue. . .

[2] Eisenhower SCIMAST, How can research on the brain inform education,
Classroom Compass 3(2), no. 1–2, 10, Retrieved May 3, 2010, 1997,
http://www.sedl.org/pubs/classroom-compass/cc v3n2.pdf.

[3] G. Futschek, Algorithmic Thinking: The Key for Understanding Computer Science,
Lecture Notes in Computer Science, 4226, Springer-Verlag, 2006, 159–168.

[4] H. Gardner, Frames of mind (The tenth anniversary ed.), Basic Books, New York,
1993.

[5] H. Gardner, Intelligence reframed, Multiple intelligences for the 21st century, Basic
Books, New York, 2000.

[6] Z. Katai, K. Juhasz and A. K. Adorjani, On the role of senses in education, Com-
puters & Education 51, no. 4, 2008, 1707–1717.

[7] Z. Katai, Multi-sensory method for teaching-learning recursion, Computer Applica-
tions in Engineering Education, 2009, 1061–3773, doi:10.1002/cae.20305.

[8] Z. Kátai and L. Toth, Technologically and artistically enhanced multi-sensory com-
puter programming education, Teaching and teacher education 26, 2010, 244–251.

[9] National Research Council, Fluent With Information Technology, Retrieved May 3,
2010, National Academy Press, 1999, http://www.nap.edu/html/beingfluent/.

[10] P. Navrat, Hierarchies of programming concepts: abstraction, generality, and be-
yond, ACM SIGCSE Bulletin 26, no. 3, 1994, 17–21.

[11] K. Schaffer, E. Stern and S. Kim, Math dance with Dr. Schaffer and Mr. Stern
(Prelim. ed.), Santa Cruz, CA: MovespeakSpin. Retrieved May 3, 2010, 2001,
http://www.mathdance.org.

[12] N. C. Shu, Visual Programming, Van Nostrand Reinhold Co., New York, 1988.

[13] J. D. Staley, Imagining the multisensory classroom, Campus Technology, 2006, Re-
trieved May 3, 2010, http://campustechnology.com/articles/40941.

[14] J. Stevens and D. Goldberg, For the learners’ sake: A practical guide to transform
your classroom and school, AZ: Zephyr Press, Tucson, 2001.

[15] A. van Dam, Exploratories: From Algorithm Animations and Interactive Illus-
trations to Explorable Microworlds, SIGCSE Technical Symposium, Austin, Texas,
Number: UMI Order No. GAX95-09398, University of Washington, 2000.

ZOLTÁN KÁTAI

SAPIENTIA UNIVERSITY

MATHEMATICS AND INFORMATICS DEPARTMENT

TÎRGU MUREŞ, ROMANIA

E-mail: katai zoltan@ms.sapientia.ro

(Received November, 2010)


