
“tmcs-gregorics” — 2012/3/1 — 0:39 — page 135 — #1

10/1 (2012), 135–152

Analogous programming with a

template class library

Tibor Gregorics

Abstract. In this paper, a template class library and its usage can be read. The classes
of the library contain the C++ code of the algorithm of programming theorems. This
library supports the implementation of the programs that are planned by analogous
programming but the primary aim of its usage is to introduce the object-oriented pro-
gramming style to show how a reusable code can be written with inheritances, overriding
virtual methods, composition of objectcs and template parameters.

Key words and phrases: analogous programming, programming theorem, enumerator,
object-oriented programming.

ZDM Subject Classification: P50.

1. Introduction

In a typical flow of teaching programming, simple algorithms must first be

planned and encoded (procedural programming), which is mostly based on al-

gorithm patterns employing analogous programming [2] [6]; then, the concept of

data type is introduced, which leads to object-oriented programming. To solve a

problem requiring only one class is not difficult, but to understand the solution

of more complex problems where several classes (or template classes) are needed,

even if there is inheritance between the classes, and if virtual methods are re-

defined, is very hard. Unfortunately, only two or three groups of problems are

This paper is supported by the European Union and co-financed by the European Social Fund

(grant agreement no. TAMOP 4.2.1./B-09/1/KMR-2010-0003).

Copyright c© 2012 by University of Debrecen

“tmcs-gregorics” — 2012/3/1 — 0:39 — page 136 — #2

136 Tibor Gregorics

known where object-oriented techniques based on few classes can be practiced.

On top of all, these problems are totally different to the ones that are solved

earlier when simple algorithms are taught.

But why cannot the same problems be used to illustrate the object-oriented

techniques as they can be solved with analogous programming? If the template

class library of programming theorems (see Figure 1) is made (there are only a few

programming theorems), many problems can then be solved by reusing the code of

this library. So, students can have practice in object-oriented programming facing

problems which are not unknown and which can also be solved with procedural

programming.

Figure 1. Template class library of programming theorems

In the object-oriented programming, a program derived from a programming

theorem is executed by an activity object (more precisely, its special method).

The class of this object is made by the inheritance from the corresponding tem-

plate class that contains the programming theorem in the most general form, one

“tmcs-gregorics” — 2012/3/1 — 0:39 — page 137 — #3

Analogous programming with a template class library 137

characteristic of which is that it is over an enumerator [5]. The code inherited

form the library must be tuned to the concrete problem. The special properties

of a programming theorem can be given by the redefinition of the virtual methods

(like the logical condition of the counting), by filling in the template parameters

(e.g. the type of the enumerated elements), or by dynamically connecting the

enumerator to the activity during the execution.

2. Elements of the class template library

The elements of the library are divided into two parts. One contains the

classes of the programming theorems; the other consists of the classes of the

famed enumerators. Both groups are derived from ancestor classes, respectively

[1] [4] [7].

2.1. Class of general enumerators

The general properties of an enumerator [5] are fixed by the abstract class

Enumerator. Every object that is an instance of this class has the enumeration

operators: First(), Next(), Current(), End(). These operators (methods) are not

defined at this level (they are abstract) because the type of the traversed elements

is not known, hence it is denoted by the template parameter Item. This class is

an interface, and the classes of all enumerators are going to implementate this.

The C++ code of this class [8]:

template <typename Item>

class Enumerator {
public:

virtual void First() = 0;

virtual void Next() = 0;

virtual bool End() const = 0;

virtual Item Current() const = 0;

virtual ∼Enumerator(){}
};

2.2. Famed enumerator classes

Most often, the elements of an array or a sequential input file are enumerated

in a programming theorem. The sequential input file is regularly based on a text

file.

“tmcs-gregorics” — 2012/3/1 — 0:39 — page 138 — #4

138 Tibor Gregorics

The class of the enumerator of a sequential input file implements the class

Enumerator, as well. The file f itself is an important data member of this class.

The operators First() and Next() read the next element of the file into a data

member called df , the value of which can be asked by the operator Current(); the

operator End() gives ‘true’, if the last reading has already been unsuccessful.

template <typename Item>

class SeqInFileEnumerator : public Enumerator<Item> {
protected:

std::ifstream f;

Item df;

public:

enum Exceptions { OPEN ERROR };
SeqInFileEnumerator(const std::string& str){

f.open(str.c str());

if(f.fail()) throw OPEN ERROR;

if(typeid(Item)==typeid(char)) f.unsetf(std::ios::skipws);

}
void First() { Next();}
void Next() { f >> df;}
bool End() const { return f.fail();}
Item Current() const { return df; }

};

Let us look at a C++ implementation where the elements of a text file should

be read (enumerated) as a sequential input file. The constructor gets the name

of the text file, it opens an input dataflow (ifstream) to the file, and it throws

an exception if the file does not exist. The template parameter denotes the type

of the elements to be read in. We suppose that the elements of the text file

are separated by white spaces, except that the single characters of the text file

are wanted to be read one-by-one. In this case, the constructor switches off the

automatic setting which skips the white spaces during the reading process. The

operator>> reads the next element of the text file, which is used in the operators

First() and Next().

The enumerator of a one-dimension array is defined by a template class de-

rived from an Enumerator where the type of the elements of this array is still

denoted by the template parameter; however, this class must define the enumer-

ation operators. Hence, the class has got two data members: the array, and the

index traversing the elements of the array. This index is set to the first element

by the operator First(), is increased by the operator Next(), is examined by the

“tmcs-gregorics” — 2012/3/1 — 0:39 — page 139 — #5

Analogous programming with a template class library 139

operator End() whether it has reached the end of the array, and points at the

current element that is given back by the operator Current().

2.3. Class of general programming theorem

The template class Procedure is the ancestor of all programming theorems.

The famed programming theorems use the same processing cycle: they process

the elements that are produced by an enumerator.

Init();

for (enor.First(); !enor.End(); enor.Next()) Do(enor.Current());

This general process can be placed into the method Run() of Procedure. The

method Run() is sealed (must not be redefined) but it calls two methods (Init(),

Do()) which are not implemented at this level; they will have to be defined right

after derivation according to the current problem.

The process of the method Run() can be transformed into a more general

form.

template <typename Item>

void Procedure<Item>::Run(){
if (enum==NULL) throw ExpectedEnumerator;

Init();

for(First(); LoopCond(); enor->Next()){
Do(enor−>Current());

}
}

Firstly, the method enor−>First() is substituted by the method First(), the

default definition of which is equal to enor−>First() but this can be changed if

necessary. For example, if a process is based on the enumerator which was earlier

used but which has broken off and now its enumeration is wanted to be continued.

In this case, the enumeration by enor−>First() should not start again; therefore,

the method First() must be redefined by the empty statement.

Secondly, the original loop condition !enor−>End() is expanded through the

calling of the method WhileCond() which gives back ‘true’ as default but this

method can be modified and, if we want, the enumeration can be stopped earlier.

(Like, for example, the summation of the elements of a sequence is needed, but

only the elements before the first negative one.) The return value of the method

WhileCond() depends on the current element of the enumeration (this is its input

“tmcs-gregorics” — 2012/3/1 — 0:39 — page 140 — #6

140 Tibor Gregorics

parameter): this element satisfies the given condition as long as the process goes

on.

Thirdly, this expanded loop condition is encapsulated into the method Loop-

Cond() which is redefined later at the definition of two programming theorems:

the linear search and selection.

The class Procedure provides a method (AddEnumerator()) that can connect

an enumerator to the general process. This enumerator is referred to by the

data member enor which is a pointer in the C++ code. In order that the process

cannot start without an enumerator, the state of this data member is checked

in the method Run(): if the enumerator does not exist (enor==NULL), then an

exception (MissingEnumerator) is thrown. The type of the enumerated elements

is not known at this point in the class Procedure; hence, it is substituted by a

template parameter (Item).

template <typename Item>

class Procedure {
protected:

Enumerator<Item> *enor;

Procedure():enor(NULL){}
virtual void Init()= 0;

virtual void Do(const Item& current) = 0;

virtual void First() {enor−>First();}
virtual bool WhileCond(const Item& current) const {return true;}
virtual bool LoopCond() const

{ return !enor −>End() && WhileCond(enor−>Current()); }
public:

enum Exceptions {MissingEnumerator};
void Run();

void AddEnumerator(Enumerator<Item>* en) { enor = en;}
virtual ∼Procedure(){}

};

2.4. Classes of programming theorems

The programming theorem summation may solve several kinds of problems.

It can calculate the sum or product of numbers, it can create the union of sets,

it may be a conditional summation like a counting; furthermore, it can copy,

pick out, and merge elements. This is reflected in the general template class

Summation.

“tmcs-gregorics” — 2012/3/1 — 0:39 — page 141 — #7

Analogous programming with a template class library 141

The template parameter Item denotes the type of the processed elements; the

ResultType is the type of the result of summation. This output is referred by the

data member result. In C++ code, this is a pointer which points to the memory

site allocated or got by the constructor.The value of result can be asked with the

method Result().

The inherited method Do() is implemented by the conditional activity

if (Cond(e)) Add(e). In this activity, the variable e is the input parameter of

Do(); that is, e is the currently enumerated element. The method Do() is not

redefined in the classes derived from Summation. The method Init() (which ini-

tializes the member result) and the method Add() (which can modify the member

result) cannot be defined in the Summation. They can only be defined in the

classes which are derived from Summation. The method Cond(), WhileCond()

and First() are also modified in these derived classes if needed.

template < typename Item, typename ResultType = Item >

class Summation : public Procedure<Item> {
protected:

ResultType *result;

bool inref;

Summation(){ inref = true; result = new ResultType; }
Summation(ResultType *r){ inref = false; result = r; }
void Do(const Item& e){ if(Cond(e)) Add(e);}
virtual void Add(const Item& e) = 0;

virtual bool Cond(const Item& e) const { return true;}
public:

ResultType Result() { return *result; }
∼ Summation(){ if(inref) delete result;}

};

The programming theorem counting, which is a special summation, is used

very frequently; hence, its general definition is made in the template class which is

an inheritance of the summation. Here, the ResultType must be substituted by the

integer. Thus, the reference ∗result is an integer, too. This number is allocated

by the first constructor of Summation, is set null in the method Init(), and is

increased by the method Add(). In the descendants of Counting, the method

Cond() will be allowed to be redefined as the current condition of counting.

“tmcs-gregorics” — 2012/3/1 — 0:39 — page 142 — #8

142 Tibor Gregorics

template <typename Item >

class Counting : public Summation<Item, int>{
public:

Counting():Summation<Item,int>(){}
protected:

void Init() { *Summation<Item,int>::result = 0;}
void Add(const Item& e) { ++*Summation<Item,int>::result;}

};

The template class selection implements the method Init(), LoopCond() and

Do() so that the method Run() selects the first element of an enumeration that

satisfies a special condition. When we use this programming theorem, we suppose

that this element exists. The condition can be given with the definition of the

abstract method Cond() in the class which is derived from Selection. Therefore

the method LoopCond() should be redefined as the negation of Cond(). The

method Init() and Do() belong to the empty statement.

template <typename Item >

class Selection : public Procedure<Item>{
protected:

void Init(){}
void Do(const Item& e) {}
bool LoopCond() const

{ return !Cond(Procedure<Item>::enor−>Current()); }
virtual bool Cond(const Item& e) const = 0;

};

The template class linear search is suitable to generate the pessimist (nor-

mal) or the optimist search. The pessimist linear search looks for the first element

of an enumeration which satisfies a special condition. The optimist version checks

whether the given condition holds on all elements of the enumeration. The origin

of the name ‘pessimist’ and ‘optimist’ derives from the meaning of the value of

the logical data member l before termination. The ‘false’ means that “we has

not yet found any fitting element, it may not exist”; the ‘true’ means that “every

element which have been checked is good, it is sure that all elements correspond

to the given condition.” A special template parameter (optimist) has been intro-

duced to set the pessimist or optimist property of the search. Its default value is

‘false’ which defines a pessimist linear search. The method Init() and LoopCond()

depend on the value of this template parameter. The method Do() changes the

value of l to ‘true’ if the current element satisfies the condition. The data member

“tmcs-gregorics” — 2012/3/1 — 0:39 — page 143 — #9

Analogous programming with a template class library 143

elem contains the last-checked element of the enumeration. Search results can be

asked with the methods Found() and Elem().

The condition of the search can be given with the definition of the abstract

method Cond() in the classes derived from LinSearch.

template < typename Item, bool optimist = false >

class LinSearch : public Procedure<Item> {
protected:

bool l;

Item elem;

void Init() {l = optimist; }
void Do(const Item& e) {l = Cond(elem = e);}
bool LoopCond() const

{ return (optimist?l:!l) && Procedure<Item>::LoopCond(); }
virtual bool Cond(const Item& e) const = 0;

public:

bool Found() const { return l;}
Item Elem() const { return elem;}

};

The template class MaxSearch defines a general maximum search that en-

capsulates the ordinary maximum selection and the conditional maximum search.

It has got three data members. The logical variable l signs the success of the

search. The variable optelem saves the optimal element which is found until the

current moment and the value of this element is in the variable opt. These three

protected members are asked with the public methods of Found(), OptItem() and

Opt().

The virtual abstract method Func() maps the value from an element, and

this value is compared to another. At this level, the type of the enumerated ele-

ments and the type of their value are unknown; they are substituted by template

parameters. The parameter Item denotes the type of the element; Value is the

type of the values compared to each other. The virtual method Cond() contains

the constraint of the conditional maximum search. Its default value is ‘true’ (in

this case, we have an ordinary maximum selecting) and it can be changed in the

descendents of MaxSearch by the redefinition of Cond().

The third template parameter is the type of the comparing (Compare). Com-

pare can define the data member better which can select the best one out of two

“tmcs-gregorics” — 2012/3/1 — 0:39 — page 144 — #10

144 Tibor Gregorics

elements. If the member better can call the operator(,), then the expression bet-

ter(left,right) could compare the parameters left and right. After the template pa-

rameter Compare is substituted by the template class Greater (see below) (which

interprets operator(,) as the relation “>”), then the expression better(left,right)

is equal to the expression left>right. This is required so as to find the maximum.

template <typename Value> class Greater{
public:

bool operator()(const Value& left, const Value& right)

{ return left >right; }
};

We can make the template class Less, which includes the relation “<” as an

operator(,). If Compare is substituted by Less, the minimum can be found.

template < typename Item, typename Value = Item,

typename Compare = Greater<Value> >

class MaxSearch : public Procedure<Item> {
protected:

bool l;

Item optelem;

Value opt;

Compare better;

void Init(){ l = false;}
void Do(const Item& current) {

Value val = Func(current);

if (!Cond(current)) return;

if (!l) { l = true; opt = val; optelem = current; }
else if (better(val,opt)){ opt = val; optelem = current; }

}
virtual Value Func(const Item& e) const = 0;

virtual bool Cond(const Item& e) const { return true;}
public:

bool Found() const { return l;}
Value Opt() const { return opt;}
Item OptElem() const { return optelem;}

};

As the class MaxSearch is derived from the class Procedure, its main task

is to implement the abstract methods of Procedure. The method Init() sets the

member variable l as ‘false’. The member Do() contains the alternative construct

which is well-known form the algorithm of the conditional maximum search. The

“tmcs-gregorics” — 2012/3/1 — 0:39 — page 145 — #11

Analogous programming with a template class library 145

concrete maximum searches can be derived from the MaxSearch where the method

Init() and Do() should not be redefined but the method Func() must be and the

method Cond(), WhileCond() and First() may be defined.

3. Solution of two problems

Now, two problems are going to be solved on the basis of our template class

library. The abstract solution of both problems should be planned by using anal-

ogous programming. It will be enough to name the corresponding programming

theorem, to define its specialties, and to give a fitting enumeration As we see,

both problems require a unique enumerator, the class of which is derived from

the class Enumerator defined by us. At the same time, the famed enumerator

is needed since it can enumerate the elements of text files which are the input

data of both problems. Additionally, in the second problem, the definition of the

unique enumerator requires another programming theorem.

3.1. Merely common numbers

Example: Two text files contain integers. The numbers are in increasing order

and are separated by white spaces. Is it true that there is no number among them

which does not appear in both?

To solve this problem, the numbers of the text files should be enumerated,

and every number should be denoted by ‘true’ if they are in both text files. If

this sign is ‘true’ for all numbers, then the answer to the question of this problem

is ‘true’; otherwise, it is ‘false’. It can be decided with an optimist linear search.

struct Number{
int n;

bool c;

};

In the class of the optimist linear search (MyLinSearch), the condition should

be redefined. The enumerated elements are pairs of integer and logical value

(Number) where the logical value shows whether the current integer is a common

element of the files or not. The condition of the linear search (Cond()) needs this

logical value.

“tmcs-gregorics” — 2012/3/1 — 0:39 — page 146 — #12

146 Tibor Gregorics

class MyLinSearch:public LinSearch<Number,true>{
protected:

bool Cond(const Number &e) const { return e.c;}
};

The solution needs the special enumerator (NumbersEnumerator) which can

enumerate the integers of the two text files so that all integers are touched only

once and that an integer is denoted by ‘true’ if it appears in both files.

class NumbersEnumerator : public Enumerator<Number> {
protected:

SeqInFileEnumerator<int> *x, *y;

Number number;

bool end;

public:

NumbersEnumerator(const string &str1, const string &str2);

∼ NumbersEnumerator(){ delete x; delete y; }
void First(){x−>First(); y−>First(); Next();}
void Next();

bool End() const { return end;}
Number Current() const { return number;}

};

The implementation of the method Next() is derived from the merging algo-

rithm.

void NumbersEnumerator::Next() {
if(end = x −>End() && y−>End()) return;

if(y−>End() || (!x−>End() && x−>Current()<y−>Current())){
number.n = x−>Current(); number.c = false;

x−>Next();

}else if(x−>End() || (!y−>End() && x−>Current()>y−>Current())){
number.n = y−>Current(); number.c = false;

y−>Next();

}else if(!x−>End() && !y−>End() && x−>Current()==y−>Current()){
number.n = x −>Current(); number.c = true;

x−>Next(); y−>Next();

}
}

“tmcs-gregorics” — 2012/3/1 — 0:39 — page 147 — #13

Analogous programming with a template class library 147

The constructor indirectly opens the text files and creates their enumerators.

NumbersEnumerator::NumbersEnumerator(const string &str1,

const string &str2){
try{

x = new SeqInFileEnumerator<int>(str1);

y = new SeqInFileEnumerator<int>(str2);

}catch(SeqInFileEnumerator<int>::Exceptions ex){
if(ex==SeqInFileEnumerator<int>::OPEN ERROR)

cout << "Non-exisiting file" << endl; exit(1);

}
}

The main program is very simple. It is enough to create the activity of the

optimist linear search and the enumerator, to connect the enumerator to this

activity, then to execute the activity, and to reveal the result.

MyLinSearch lin;

NumbersEnumerator it("input1.txt", "input2.txt");

lin.AddEnumerator(&it);

lin.Run();

if(lin.Found()) cout << "All numbers are common";

else cout << "There is non-common number";

3.2. The best student

Example: In a text file, students’ marks are listed in rows. Every row contains

a student’s identity number and one mark separated by spaces. The rows are

ordered according to identity numbers. Give the identity number of one of the

best (average) student.

This problem can be solved by maximum selection where the average of the

students should be compared.

The type of Student is defined first which can describe either a pair of identity

and mark, or a pair of identity and average. In order to read out a new row from

the file, the operator>> is overloaded on Student.

“tmcs-gregorics” — 2012/3/1 — 0:39 — page 148 — #14

148 Tibor Gregorics

struct Student {
string id;

double result;

};
ifstream& operator>>(ifstream &in, Student &e) {

in >> e.id >> e.result;

return in;

}

In the maximum selection (MyMaxSearch), it is enough to define the method

Func() which is mapped from a pair of identity number and average to the average.

class MyMaxSearch : public MaxSearch <Student, int> {
protected:

int Func(const Student &e) const { return e.result;}
};

The pairs of identity number and mark can be read out from the file with

an enumerator of SeqInFileEnumerator<Student>. In our maximum selection,

it is not enough to enumerate these pairs. We need the unique enumerator

(StudentEnumerator) that can enumerate all students along with their identity

number and their averages. The production of averages requires the special sum-

mation which can count the marks of the same identity number and cumulate the

sum of them. The average can be calculated from these two numbers.

The type of this new enumerator is derived from the class Enumerator and

based on the enumerator of the text file (f); this enumerator can read the text

file row by row. The enumerator f is created by the constructor which gets the

name of the text file. The member student contains the current student’s data;

end signs if the enumeration of averages is finished.

“tmcs-gregorics” — 2012/3/1 — 0:39 — page 149 — #15

Analogous programming with a template class library 149

class StudentEnumerator : public Enumerator<Student> {
protected:

SeqInFileEnumerator<Student>* f;

Student student;

bool end;

public:

StudentEnumerator(const string &str);

∼StudentEnumerator(){ delete f;}
void First(){f−>First(); Next();}
void Next() ;

bool End() const { return end;}
Student Current() const { return student;}

};

The constructor indirectly opens the text file and creates its enumerators.

StudentEnumerator::StudentEnumerator(const string &str) {
try{ f = new SeqInFileEnumerator<Student>(str); }
catch(SeqInFileEnumerator<Student>::Exceptions ex){

if(ex==SeqInFileEnumerator<Student>::OPEN ERROR)

{ cout << "Non-exisiting file" << endl; exit(1);}
}

}

The method First() is almost equal to the method Next(), but contains the

reading of the first pair of identity-mark from the text file. The method Next()

checks whether there exists a next row. If so, there also exists a next student, and

his average has to be computed with another programming theorem. Moreover,

not only one but two theorems are needed: one counts the marks of the same

identity number; the other adds them. Both are the same loop summation: they

can be transformed into one (MySummation).

void StudentEnumerator::Next() {
if(end = f−>End()) return;

student.id = f −>Current().id;

MySummation sum(student.id);

sum.AddEnumerator(f);

sum.Run();

student.result = sum.Result().sum/sum.Result().count;

}

“tmcs-gregorics” — 2012/3/1 — 0:39 — page 150 — #16

150 Tibor Gregorics

These double activities initially require the current identity number, and

results in two numbers which are saved in the structure of Pair.

struct Pair {
double sum;

int count;

};

An enumerator of our double summation (MySummation) would be required

to traverse the marks belonging to the current identity number (it is saved in the

member id). However, since we would like to avoid creating too many enumerators

to every identity number, we have only one enumerator, the enumerator f (based

on the text file) which enumerates all the marks. This enumerator has already

begun when a summation starts to work, and has not finished at the end of

the summation. This enumerator should not be restarted in the summation, so

the method First() should be redefined with the empty statement. The double

summation ends when the new identity number enumerated by f is different to

the current one; hence, the method WhileCond() should accordingly be redefined.

class MySummation : public Summation<Student,Pair> {
protected:

string id;

void First(){}
void Init(){result−>sum = 0; result−>count = 0;}
void Add(const Student &e)

{result−>sum+=enor−>Current().result; ++result−>count;}
bool WhileCond(const Student &e) const { return e.id == id;}

public:

MySummation(const string &str):Summation<Student,Pair>(),id(str){}
};

Finally, let us examine the main program. This program creates the activity

objects of the maximum selection and of the enumerator, it connects them, then

it executes the maximum selection, and it writes out the result.

MyMaxSearch max;

StudentEnumerator it("input.txt");

max.AddEnumerator(&it);

max.Run();

if(max.Found()) cout << "The best student: " << max.OptElem().id;

else cout << "There are no students!";

“tmcs-gregorics” — 2012/3/1 — 0:39 — page 151 — #17

Analogous programming with a template class library 151

4. Conclusions

These two problems presented here may be enough to prove that numerous

similar problems can be solved on the basis of our template class library.

The application of the library makes the usage of analogous programming

more conscious. However, the algorithmic thinking cannot be used to create the

solution here but the analysis of the problem should instead be in focus.

The implementation of the solutions gives a sample of the object-oriented

programming. It reveals the role of inheritance, virtual methods and template

parameters, and it exemplifies how the process of the code-reusability among

editing, compiling and running can be dismembered.

The solutions based on the library are especially nice in the programmer’s

point of view. It is very interesting that there can be found only one loop in the

solutions, specifically in the method Run() of the ancestor class of all program-

ming theorems. Neither in the other classes of the library nor in its own code

should a newer loop be written.

The template class library presented here is not made for industrial applica-

tions. It perfectly underlines the object-oriented techniques, but I do not think

that its usage would be simple or expedient in practice. The implementation of

a programming theorem (which is, in fact, one loop) is not hard; it can be done

directly without deriving it from a template class library. The understanding and

correct use of a complex template class library is more difficult. Therefore, this

article shows the limit when it is worth using object-oriented tools to resolve a

problem, and when it has no advantage in practice.

References

[1] G. Booch, J. Rumbaugh and I. Jakobson, The Unified Modeling Language User

Guide, Second Edition, Addison-Wesley, 2005.

[2] Sz. Csepregi, A. Dezső, T. Gregorics and S. Sike, Automatic Implementation of Ser-

vice Required by Components, ETH Technical Report 567, PROVECS’2007 Work-
shop (2007).

[3] Á. Fóthi, Bevezetés a programozáshoz, ELTE Eötvös Kiadó, 2005 (in Hungarian).

[4] E. Gamma, R. Helm, R. Johnson and J. M. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, 1st Edition, ISBN 0201633612, Pearson Educa-
tion Inc., Addison Wesley Professional, 1995.

[5] T. Gregorics, Programming theorems on enumerator, Teaching Mathematics and

Computer Science, Debrecen 8, no. 1 (2010), 89–108.

“tmcs-gregorics” — 2012/3/1 — 0:39 — page 152 — #18

152 T. Gregorics : Analogous programming with a template class library

[6] T. Gregorics and S. Sike, Generic algorithm patterns, Proceedings of Formal Methods
in Computer Science Education FORMED 2008, Satellite workshop of ETAPS 2008,
141–150, Budapest March 29, 2008.

[7] J. Rumbaugh et al., Object Oriented Modeling and Design, Prentice Hall, 1991.

[8] B. Stroustrup, The C++ Programming Language, 2001.

TIBOR GREGORICS

ELTE, FACULTY OF INFORMATICS

DEPT. SOFTWARE TECHNOLOGY AND METHODOLOGY

1117 BUDAPEST PÁZMÁNY PÉTER SÉTÁNY 1/C

E-mail: gt@inf.elte.hu

(Received May, 2011)

