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Diophantine equations concerning

various means of binomial coefficients

Richárd Rakamazi

Abstract. The main goal of this paper is to show by elementary methods, that there
are infinitely many different pairs of binomial coefficients of the form

(

n

2

)

such that also
their arithmetic, geometric and harmonic means, resp. have the same form. We give
all solutions for the arithmetic mean. We also give infinitely many non-trivial solutions
for the arithmetic mean of three binomial coefficients satisfying some special conditions.
The proofs require the solution of some other interesting Diophantine equations, too.
Since the author is also a secondary school teacher, we use elementary methods that
mostly can be discussed in secondary school, mainly within the framework of group
study sessions. This explains why the means are generally analysed for two terms
and for binomial coefficients with “lower” value 2, since further generalizations require
substantially deeper mathematical methods which are beyond the frames of this paper.
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Problem 1. Find all solutions of the Diophantine equation

(

x
2

)

+
(

y
2

)

2
=

(

z
2

)

where y > x ≥ 2.

Solution. If we expand the binomial coefficients and multiply the equation

by 16, we get

4x2 − 4x+ 4y2 − 4y = 8z2 − 8z .
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Writing complete squares on both sides, we have

(2x− 1)2 + (2y − 1)2 = 2(2z − 1)2 .

This is of the form A2 + B2 = 2C2, which can be reduced to the Pythagorean

equation a2 + b2 = c2 by substitutions A = a − b, B = a + b, and C = c,

where a, b, c > 0 are integers. The general solution is a = 2uvd, b = (u2 − v2)d,

c = (u2 + v2)d, where u > v > 0 are integers of opposite parity, gcd(u, v) = 1,

and d > 0 is an arbitrary integer.

If we substitute these into the original equation, we get

x =
|2uvd− (u2 − v2)d|+ 1

2
, y =

2uvd+ (u2 − v2)d+ 1

2
,

z =
(u2 + v2)d+ 1

2
.

The fractions in this case can be integers only if d is an odd positive integer.

Problem 2. Show that the Diophantine equation

(

x−d
2

)

+
(

x
2

)

+
(

x+d
2

)

3
=

(

y
2

)

has infinitely many solutions, where x ≥ d > 0.

Solution. First we verify a Lemma.

Lemma 3. All integer solutions of the equation x2 + 6y2 − z2 = 0 are given

by

x =
6u2 − 24uv − v2

δ
· t

y =
−12u2 − 2uv + 2v2

δ
· t

z =
30u2 + 5v2

δ
· t

where u and v are integers, v ≥ 0, gcd(u, v) = 1, δ = gcd(6u2 − 24uv −
v2,−12u2 − 2uv + 2v2, 30u2 + 5v2), and t is an arbitrary integer. If t 6= 0, we

get the trivial solution x = y = z = 0 iff u = v = 0. The primitive solutions

x = 6u2
−24uv−v2

δ
, y = −12u2

−2uv+2v2

δ
, z = 30u2

+5v2

δ
are pairwise distinct, and all

integer solutions are obtained as the multiples of the primitive solutions.
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Proof. If z = 0, then obviously x = y = 0. Suppose that z 6= 0. Dividing

the equation by z and introducing X = x
z
, Y = y

z
we get the equation

X2 + 6Y 2 = 1 . (1)

If we could succeed in solving this equation in the set of the rational numbers, then

we would also get all integer solutions of the original equation, and vice versa, an

integer solution of the original equation gives a rational solution for equation (1)

(see [2]). Since x = 1, y = 2, z = 5 is an integer solution of the original equation,

thereforeX = 1

5
, Y = 2

5
is a rational solution of equation (1). Equation (1) defines

a curve (ellipse) on the plane containing the point ( 1
5
, 2

5
). Consider all straight

lines on the plane whose slope m is rational, and go through the given point

( 1
5
, 2

5
). The equation of the line can be written in the form Y = m(X − 1

5
) + 2

5
.

Substituting this into equation (1) and rearranging it, we get the following

quadratic equation:

(6m2 + 1)X2 +
24m− 12m2

5
·X +

6m2 − 24m− 1

25
= 0 .

If the discriminant is not zero, i.e. m 6= − 1

12
, the equation has exactly two solu-

tions, one is obviously X = 1

5
, and the other can be obtained for example with

the help of Vieta’s formulas. We can get the second value of X after a little cal-

culation, X = 6m2
−24m−1

30m2+5
. If we substitute this into the equation of the straight

line, we get the second value of Y , which is Y = −12m2
−2m+2

30m2+5
. If m is rational,

then also X and Y are rational numbers. Thus if m runs through the set of the

rational numbers, then X and Y exactly provide all rational solutions for equation

(1). Intuitively it means, that there exists a one-to-one correspondence between

the slopes m and the points with rational coordinates of the ellipse, namely m is

the slope of the straight line connecting that point of the ellipse with the point

( 1
5
, 2

5
). We can get all rational solutions with this method and we obtain each of

them exactly once.

Let m = u
v
, where u and v are integers, gcd(u, v) = 1 and v 6= 0. (If

v = 0, then the vertical straight line defines the point ( 1
5
,− 2

5
) of the ellipse,

which also gives us a rational solution.) If we substitute this into the formulae

we get X = 6u2
−24uv−v2

30u2+5v2 and Y = −12u2
−2uv+2v2

30u2+5v2 for the rational solutions of (1),

and from here returning to the original equation, we obtain the integer solutions

x = 6u2 − 24uv − v2

y = −12u2 − 2uv + 2v2

z = 30u2 + 5v2 .
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For given u, v, gcd(u, v) = 1, we divide these integer solutions x, y, z by δ =

gcd(6u2−24uv−v2,−12u2−2uv+2v2, 30u2+5v2), and thus obtain the primitive

solutions. We can get all integer solutions of the equation x2 + 6y2 − z2 = 0, if

we multiply the primitive solutions by an arbitrary integer t. �

Now we return to our original problem, to the Diophantine equation
(

x−d
2

)

+
(

x
2

)

+
(

x+d
2

)

3
=

(

y
2

)

.

If we rearrange the equation and expand the binomial coefficients, we have

(x− d)(x− d− 1) + x(x− 1) + (x+ d)(x+ d− 1) = 3y(y − 1) .

Multiplying the equation by 4, then adding 3 to both sides, we can create complete

squares

[2(x− d)− 1]
2
+ (2x− 1)2 + [2(x+ d)− 1]

2
= 3(2y − 1)2 .

Let us introduce: A = 2(x − d) − 1, B = 2(x + d) − 1 and C = 2y − 1. Since

2x− 1 = A+B
2

, we can rewrite the equation into the following form:

A2 +

(

A+B

2

)2

+B2 = 3C2 .

Using A2 +B2 = 2
[

(

A+B
2

)2
+
(

B−A
2

)2
]

, we obtain

3

(

A+B

2

)2

+ 2

(

B −A

2

)2

= 3C2 .

Here
(

B−A
2

)2
is divisible by 3, and therefore also by 9, hence dividing by 3 we

get the following form:

(

A+B

2

)2

+ 6

(

B −A

6

)2

= C2 .

Let us use the result of the Lemma, but for the sake of simplicity take t = δ. We

can see that even with this constraint we can get infinitely many solutions for our

Diophantine equation. Using

A+B

2
= 6u2 − 24uv − v2

B −A

6
= −12u2 − 2uv + 2v2
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C = 30u2 + 5v2

we have

x =
6u2 − 24uv − v2 + 1

2
d = −18u2 − 3uv + 3v2

y =
30u2 + 5v2 + 1

2
.

It can be seen from the formulas, that v has to be an odd number. If x ≥ d > 0

then the inequalities

−18u2 − 3uv + 3v2 > 0

42u2 − 18uv − 7v2 + 1 ≥ 0

must hold.

We got the second inequality from rearranging x ≥ d. If we require the

stronger inequality 42u2 − 18uv − 7v2 > 0 and we have the constraint for v to

be a positive odd number, then dividing the inequalities by v2, we get quadratic

inequalities for u
v
. In this case we have − 1

2
< u

v
< − 1

4
, from which we can

get infinitely many solutions for our original equation even considering the above

conditions. If for example u = −2t, v = 6t + 1, where t ≥ 1 is an integer, then

we have x = 138t2 + 18t, d = 72t2 + 42t + 3 and y = 150t2 + 30t + 3, which if

choosing t = 1 for example, gives the solution
(

39

2

)

+
(

156

2

)

+
(

273

2

)

3
=

(

183

2

)

.

Problem 4. Show that the Diophantine equation

2
1
(

x
2

) + 1
(

y
2

)

=
(

z
2

)

has infinitely many solutions, where y > x ≥ 2.

Solution. Rewriting the equation we get

2 ·
(

x
2

)

·
(

y
2

)

=
(

x
2

)

·
(

z
2

)

+
(

y
2

)

·
(

z
2

)

.

We have to solve the equation 2AB = AC+BC with x(x−1) = A, y(y−1) = B,

and z(z−1) = C. Since C ≥ 2 is even, this equation is equivalent to A+B | AB.
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Put d = gcd(A,B), then A = ad and B = bd, where gcd(a, b) = 1. If we substitute

this into the divisibility criterion we get a + b | dab. Since gcd(ab, a + b) = 1,

therefore a+ b | d, from which we obtain d = (a+ b)c. Hence

A = ac(a+ b)

B = bc(a+ b)

C = 2abc .

Put a = c = 1, then we need a b which satisfies

x(x− 1) = b+ 1

y(y − 1) = b(b+ 1)

z(z − 1) = 2b .

If we multiply each equation by 4 and add 1 to both sides, then we can form

complete squares on the left hand sides. After these conversions the right hand

side of the second equation will automatically be a complete square, thus we need

to find suitable positive integers n and m for which 4b+5 = n2 and 8b+1 = m2.

Substituting these two equalities, we obtain Pell’s equation m2 − 2n2 = −9. Any

solution (n,m) of this equation, gives an appropriate b, since an inspection modulo

8 yields that n and m are odd numbers, therefore their squares are congruent to

1 modulo 8. It is well known (see [1]) that if there exists a solution of this

equation among the positive integers, then there are infinitely many solutions.

As an illustration, we provide a solution, and will show how to generate a new

solution.

We easily get the values m = 3 and n = 3, and write this solution in the

form (3 − 3
√
2)(3 + 3

√
2) = −9. To create a new solution we shall combine this

with one of the infinitely many non-trivial solutions of equation (r2 − 2s2 = 1),

e.g. 1 = 32 − 2 · 22 = (3 − 2
√
2)(3 + 2

√
2). Multiplying the two decompositions

we obtain

(3− 3
√
2)(3− 2

√
2)(3 + 3

√
2)(3 + 2

√
2) = (21− 15

√
2)(21 + 15

√
2) = −9 .

Hence also m = 21, n = 15 is a solution. The relevant values x, y, z are x = 8,

y = 56 and z = 11:
2

1
(

8

2

) + 1
(

56

2

)

=
(

11

2

)

.
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Problem 5. Show that the Diophantine equation

√

(

x
2

)

·
(

y
2

)

=
(

z
2

)

has infinitely many solutions, where y > x ≥ 2.

Solution. After squaring, expanding the binomial coefficients on both sides,

multiplying by 64, and forming complete squares we have

[

(2x− 1)2 − 1
] [

(2y − 1)2 − 1
]

=
[

(2z − 1)2 − 1
]2

.

Let

A = 2x− 1

B = 2y − 1

C = 2z − 1 .

Here 3 ≤ A < B, furthermore let’s specify the condition C = B−A
2

. We can show

that even with this restriction we get infinitely many solutions for our original

Diophantine equation. After substitution and rearrangement, we get the following

relation (see [3]):

(A2 − 1)(B2 − 1)−
[

(

B −A

2

)2

− 1

]2

= 0 .

Expanding the brackets, and multiplying by 16, we obtain

16A2B2−16A2−16B2−B4+4B3A−6A2B2+4BA3−A4+8B2−16AB+8A2 = 0 .

−(A+B)4 + 8A3B + 8AB3 + 16A2B2 − 8(A+B)2 =

−(A+B)2
[

(A+B)2 − 8AB + 8
]

= 0 .

Since A + B > 0 , we have (A + B)2 − 8AB + 8 = 0. This equation can be

rewritten as

B2 − 6AB +A2 + 8 = 0 (2)

(B − 3A)2 − 8(A2 − 1) = 0 .

Clearly, 4 | B − 3A, thus B − 3A = 4D. From this we have Pell’s equation

A2 − 2D2 = 1. If D < 0 then due to B > A we have 3A + 4D > A, therefore
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A + 2D > 0. However, this is a contradiction since from −2D < A we get

4D2 < A2 = 2D2 + 1, i.e. D2 < 1

2
. For D = 0 we would get A = 1, but A ≥ 3.

Hence D > 0.

It is well known (see [1]) that Pell’s equation A2−2D2 = 1 is solvable, and all

positive integer solutions (An, Dn) can be obtained from the following recursive

formulas: A1 = 3, D1 = 2, and for n ≥ 1

An+1 = 3An + 4Dn

Dn+1 = 2An + 3Dn .

Since B − 3A = 4D, therefore Bn = 3An + 4Dn = An+1, namely the solutions of

equation (2) are (An, Bn) = (An, An+1). Using the above relations, we can find

recursive formulas also for An: A1 = 3, A2 = 17 and for n ≥ 1

An+2 = 3An+1 + 4Dn+1 = 3An+1 + 4(2An + 3Dn) =

= 3An+1 + 8An + 3(An+1 − 3An) = 6An+1 −An .

Since the numbers An are odd, we only need to show that Cn = Bn−An

2
=

An+1−An

2
are odd, as well. The first terms of the series are: A1 = 3, A2 = 17,

A3 = 99, A4 = 577 etc. We show that the terms with even indices are congruent

to 1 modulo 4, while the terms with odd indices are congruent to 3 modulo 4.

We can prove these statements by induction. Supposing the claim holds for the

indices 2k−2 and 2k−1, then A2k = 6A2k−1−A2k−2 = 6(4l+3)−(4s+1) = 4r+1

thus we have proven thestatement for i = 2k, too. We can proceed similarly for

A2k+1. Therefore An+1 −An are of form 4m+2, therefore Cn are indeed odd for

every n ≥ 1.
Hence, we have got infinitely many solutions for the equation

(

x
2

)

·
(

y
2

)

=
(

z
2

)2

satisfying 2 ≤ x < y:

x =
An + 1

2

y =
An+1 + 1

2

z =
An+1 −An + 2

4
.

Below we summarize some open questions, which have arisen while solving

Diophantine equations related to binomial coefficients.

Question 6. 1) Are there (infinitely many) non-trivial solutions for the

Diophantine equation

√

(

x
2

)2

+

(

y
2

)2

2
=

(

z
2

)

?
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2) Can all positive integer solutions be given for two terms (with a lower value

2 in the binomial coefficients) for the geometric and harmonic means?

3) Can we find infinitely many or all non trivial solutions for any mean if the

number of terms, or the lower value, or possibly both are greater than 2?
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