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Solving Diophantine equations with

binomial coefficients in study group

sessions using both elementary and

higher mathematical methods

Richárd Rakamazi

Abstract. The paper can be considered as the continuation of [4] in the sense that we are
studying Diophantine equations containing binomial coefficients. It was an important
aspect that one should be able to discuss these problems — even if not in complete
depth — also in high school study group sessions with the most talented students. We
present various methods through several examples, which help the successful handling
of other questions too, including problems in math competitions. Our discussion starts
with the elementary treatment of easier problems, and then proceed gradually to more
difficult questions which require higher mathematical methods.
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The primary purpose of the paper is to demonstrate how the solution of some

special Diophantine equations by a wide range of methods can lead us from rel-

atively simple questions to profound and complicated mathematical problems.

These methods fit very well into the workshop activity of study group sessions

from several points of view: They greatly enhance the students‘ arsenal of math-

ematical methods, enable the efficient investigation of various difficulty levels

(infinitely many solutions, finding all solutions), and introduce the gifted stu-

dents into the art of conjecturing and proving by themselves. Thus the paper is
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strongly connected with those researches in mathematical didactics which exam-

ine the development of the cognitive abilities of students during the teaching and

learning process explicitly within the Diophantine topic (see [9]).

Problem 1. Show that the Diophantine equation

(

x

2

)

+
(

y

2

)

=
(

z

2

)

has infinitely many solutions, where x, y, z ≥ 2, x, y, z ∈ Z.

Solution. If we expand the binomial coefficients and multiply the equation

by 2, we get

x2 + y2 − x− y = z2 − z .

After rearranging the equation and applying the possible factorization, we have

x(x− 1) = (z − y)(z + y − 1) .

Let r = gcd(x, z− y), thus x = rs and z− y = rt, where gcd(s, t) = 1. We obtain

that s(x − 1) = t(z + y − 1). Since gcd(s, t) = 1, we have z + y − 1 = su and

x− 1 = tu. From these equations we obtain

x = rs, y =
us− rt+ 1

2
, z =

rt+ us+ 1

2
,

where rs − tu = 1. It is obvious that y and z are integers iff us and rt are of

opposite parity. The relation rs−tu = 1 gives that rs and tu are of opposite parity,

combining these we immediately obtain that y and z are integers iff exactly one

of r, s, u, t is even. For example, if r = 1, s = 4(k+1)2, u = 2k+3 and t = 2k+1,

where k ∈ N the relevant values x, y, z are

x = 4(k + 1)2, y = 4k3 + 14k2 + 15k + 6, z = 4k3 + 14k2 + 17k + 7 .

Problem 2. Show that the Diophantine equation

(

x−1

2

)

+
(

x

2

)

+
(

x+1

2

)

=
(

y

2

)

has infinitely many solutions, where x ≥ 3, y ≥ 2, x, y ∈ Z.

Solution. If we expand the binomial coefficients and apply the possible

cancellations we have

3x2 − 3x+ 2 = y2 − y .
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After multiplying both sides by 4 we can form complete squares:

12x2 − 12x+ 8 = 4y2 − 4y ,

3(2x− 1)2 + 6 = (2y − 1)2 .

Putting v = 2x− 1 and u = 2y − 1, u, v ∈ Z we have

u2 − 3v2 = 6 . (1)

We show that this equation has infinitely many odd integer solutions u, v. Obvi-

ously, in any integer solution u, v are odd integers (and thus x and y are integers),

since if exactly one of u and v is even, then the LHS is odd and if both are even,

then the LHS is divisible by 4.

Let us consider the following decomposition:

(3−
√
3)(3 +

√
3) = 6 (2)

and the so-called Pell’s equation s2 − 3r2 = 1 (see [6]). We easily get the values

s = 2, r = 1, and this yields the decomposition (2−
√
3)(2+

√
3) = 1. If we raise

both sides of this equality to the n th power, then we have with suitable integers

αn, βn

(αn −
√
3βn)(αn +

√
3βn) = 1 .

If we multiply this with (2) and expand the brackets, we get a new solution of

equation (1). Let us illustrate this in the case n = 1. We obtain

(2−
√
3)(2 +

√
3) · (3−

√
3)(3 +

√
3) = (9− 5

√
3)(9 + 5

√
3) = 92 − 52 · 3 = 6 .

Thus, u = 9 and v = 5 give a solution of equation (1). The relevant values x, y

are x = 3 and y = 5.
(

2

2

)

+
(

3

2

)

+
(

4

2

)

=
(

5

2

)

.

Problem 3. Show that the Diophantine equation
(

x

2

)

+
(

y

2

)

2
= z2

has infinitely many solutions, where x 6= y and x, y ≥ 2, x, y, z ∈ Z.

Solution. Note that the equation has infinitely many solutions x = y ≥ 2,

since with equivalent conversions we get a Pell’s equation (see below), which,
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as previously mentioned, has infinitely many solutions in positive integers. The

equation is equivalent to

x2 − x+ y2 − y = (2z)2 .

After multiplying both sides by 4, and forming complete squares we have

(2x− 1)2 + (2y − 1)2 = (4z)2 + 2 .

Remark 4. The equation A2+B2 = C2+2 is a special Diophantine equation

from the theory of ternary quadratic forms. In 1916 S. Ramanujan investigated

those integers which cannot be represented in the form ax2+ by2+ cz2 for certain

specific values of a, b and c. One of the most famous example is x2 + y2 + 10z2.

(See [8]).

For the time being we are not aiming to find all the integer solutions of the

equation (Lemma 9), we are rather seeking infinitely many solutions for specific

given conditions. It is a general truth, that even if there are too many variables, it

is worth to decrease the number of the unknowns by a simple connection between

the variables, if possible. In this case, by the substitution B = C − 1 we get a

diophantine equation that can be handled by elemental tools.

Let us consider the Diophantine equation A2 + B2 = C2 + 2 and examine

the equation modulo 8. It is obvious, that A,B > 0 are odd, C > 0 and 4 | C.

Let us look for solutions with condition B = C − 1. After applying the possible

simplifications we have A2 = 2C + 1. If we choose the value of C as 2n2 + 2n,

then A = 2n+1 and B = 2n2+2n−1, where n > 1 is an integer. If we substitute

these values, we get infinitely many solutions in integers x, y, z:

x = n+ 1, y = n2 + n, z =
n(n+ 1)

2
.

Remark 5. In general the equation A2 + B2 = C2 + c, where c is a fixed

integer has infinitely many solutions in integers. We get the following solutions

after the substitution B = C − 1 and simplification:

A = t, B =
t2 − 1− c

2
, C =

t2 + 1− c

2
.

Since the numerators of B and C have the same parity, we only need to require

t > 0 to be odd if c is even, and to be even if c is odd.
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Remark 6. In the previous problem we have successfully given infinitely

many integer solutions for the Diophantine equation A2 + B2 = C2 + 2. This

method can be taught at a high school level. Now, with the help of higher

mathematical methods, we can give all integer solutions of the equation. For the

deduction we use the relevant sections in book [2] related to the quadratic forms.

We summarize the main definitions and theorems from the book.

Definition 7.

(i) The quadratic forms f(x, y) = ax2+bxy+cy2 and g(x, y) = Ax2+Bxy+Cy2

are equivalent, if there exists a 2×2 matrix M with integer entries, such that

detM = 1, and g(x, y) = f(m11x+m12y,m21x+m22y) for all integers x, y.

Notation: f ∼ g.

(ii) Let f be a quadratic form whose discriminant d is not a perfect square. We

call f reduced if

−|a| < b ≤ |a| < |c| or 0 ≤ b ≤ |a| = |c| .

Theorem 8.

(i) Let d be a given integer, which is not a perfect square. Each equivalence class

contains at least one reduced quadratic form, whose discriminant is d.

(ii) Let f be a reduced quadratic form. If f is indefinite, then 0 < |a| ≤
√
d
2
.

After all these preparations, the following lemma can be proved.

Lemma 9. The Diophantine equation A2 +B2 = C2 + 2 has infinitely many

solutions in integers, all integer solutions are given by

A =
m2

11 −m2
12 − 2m2

21 + 2m2
22

2
, B = m11m12 − 2m21m22,

C =
m2

11 +m2
12 − 2m2

21 − 2m2
22

2
,

where mij are integers, m11,m12 are odd integers and m11m22 −m12m21 = 1.

In the statement, the roles of A and B are interchangeable.

Proof. Let us consider the equation A2 + B2 = C2 + 2 modulo 8. It is

obvious, that we can get integer solutions only if A,B are odd, and 4 | C. There-

fore there exist odd numbers a, b and c, that for example A = a−c
2

, B = b

and C = a+c
2

. After substitution we obtain 4b2 − 4ac = 8 which is exactly
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the discriminant of the quadratic form f(X,Y ) = aX2 + 2bXY + cY 2, where

d = 8. Based on Definition 7 and Theorem 8, there exists a reduced quadratic

form g(X,Y ) = a′X2 + 2b′XY + c′Y 2 equivalent to f , with d′ = 8, |a′| ≤ |c′|,
|2b′| ≤ |a′| and 0 < |a′| ≤

√
8

2
. According to the last condition we get |a′| = 1,

thus a′ = 1 or a′ = −1. In both cases only b′ = 0 is possible. Substituting this

into (2b′)2 − 4a′c′ = 8, we have c′ = −2 if a′ = 1, and c′ = 2 if a′ = −1. The two

reduced quadratic forms are g(X,Y ) = X2 − 2Y 2 and g′(X,Y ) = −X2 +2Y 2. It

is enough to consider one of them, since the two quadratic forms are equivalent,

as based on Definition 7 the matrix

M =

(

1 −2

1 −1

)

will be appropriate. Since f ∼ g, there exist integers m11,m12,m21,m22 such

that

aX2 + 2bXY + cY 2 = (m11X +m12Y )2 − 2(m21X +m22Y )2

for all integers X,Y and detM = 1, i.e. m11m22 −m12m21 = 1. After expanding

the brackets and comparing the coefficients we have

m2
11 − 2m2

21 = a, m11m12 − 2m21m22 = b, m2
12 − 2m2

22 = c .

This gives

A =
m2

11 −m2
12 − 2m2

21 + 2m2
22

2
, B = m11m12 − 2m21m22,

C =
m2

11 +m2
12 − 2m2

21 − 2m2
22

2
.

Here A and C can be integers only if m11 and m12 have the same parity, but

they cannot be both even, since in this case the condition m11m22 −m12m21 = 1

cannot be satisfied. Let us consider e.g. m11 = 5, m22 = 3, m12 = 7 and

m21 = 2. After substitution we get the values A = −7, B = 23 and C = 24 for

which (−7)2 + 232 = 242 + 2. �

With the help of Lemma 9, we can give all solutions of equation
(x2)+(

y

2)
2

= z2:

x =
m2

11 −m2
12 − 2m2

21 + 2m2
22 + 2

4

y =
m11m12 − 2m21m22 + 1

2

z =
m2

11 +m2
12 − 2m2

21 − 2m2
22

8
.
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Here x, y and z are integers iff m11 and m12 are both odd, exactly one of m21

and m22 is even and m11m22 −m12m21 = 1. Further x, y, z ≥ 2, and x and y are

interchangeable. Let us consider e.g. m11 = 7, m22 = 0, m12 = 1 and m21 = −1:

after substitution we have x = 12, y = 4 and z = 6 and get
(122 )+(

4

2)
2

= 62.

As a special case, m11 = 2n + 1, m12 = 1, m21 = −1 and m22 = 0 yield the

solutions found in Problem 3.

Problem 10. Show that the Diophantine equation

(

x

2

)

+

(

y

2

)

= z2

has infinitely many solutions, where x, y ≥ 2, x, y, z ∈ Z .

We start with presenting various elementary arguments giving certain types

of infinitely many solutions, and finally describe all integer solutions.

Solution 1. If we substitute y = x+1 and expand the binomial coefficients

we obtain:
(

x

2

)

+
(

x+1

2

)

=
x(x− 1)

2
+

(x+ 1)x

2
= x2 .

Hence the triple (x;x+ 1;x) is a solution for any x ≥ 2.

Solution 2. We can get the same result from the following equivalent form

of the equation:

(2x− 1)2 + (2y − 1)2 = 2(2z)2 + 2 .

Considering the Diophantine equation A2 + B2 = 2C2 + 2, clearly A = C − 1,

B = C + 1 is a solution.

This gives

x =
t

2
, y =

t+ 2

2
, z =

t

2
,

where t ≥ 1 is an arbitrary even number.

Solution 3. Improving this method we can find infinitely many integer

solutions, where x, y, z are pairwise distinct. Let us consider the equation A2 +

B2−2C2 = 2, where A,B are odd integers and C is even. Since 22+142−2·102 =

0, we look for solutions of the form

(2n+ α)2 + (14n+ β)2 − 2(10n+ γ)2 = 2 ,
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where n ≥ 1 is an integer, and α, β, γ are properly chosen parameters. After

cancellation and comparing the coefficients on both sides we obtain α2+β2−2γ2 =

2 and α + 7β − 10γ = 0. Substituting α = 10γ − 7β into the first relation we

get (5β − 7γ)2 = 1, so for example β = 3, γ = 2, α = −1 are suitable. Hence

(2n− 1)2 + (14n+ 3)2 = 2(10n+ 2)2 + 2 holds, and we get

x = n, y = 7n+ 2, z = 5n+ 1 .

Solution 4 (All integer solutions of the equation). Let us rewrite the equa-

tion (2x− 1)2 + (2y − 1)2 = 2(2z)2 + 2 in the form

(y − x)2 + (x+ y − 1)2 = (2z)2 + 1 .

After rearranging and factorizing we obtain

(x+ y − 2)(x+ y) = (2z − y + x)(2z + y − x) .

As seen in the solution of Problem 1, this implies that there exist integers r, s, t, u

for which

x+ y − 2 = rs

x+ y = tu

2z − y + x = rt

2z + y − x = su .

From these we have

x =
2tu+ rt− su

4

y =
2tu− rt+ su

4

z =
rt+ su

4
.
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Furthermore, the condition tu−rs = 2 must hold and the following table contains

the possible remainders of the integers t, u, r, s modulo 4:

t u r s t u r s

3 1 1 1 1 2 0 2

1 3 1 1 2 1 2 0

1 1 3 1 0 2 1 2

1 1 1 3 2 0 2 1

3 1 3 3 3 2 0 0

1 3 3 3 2 3 0 0

3 3 3 1 0 0 3 2

3 3 1 3 0 0 2 3

1 2 0 0 3 2 0 2

2 1 0 0 2 3 2 0

0 0 1 2 0 2 3 2

0 0 2 1 2 0 2 3

As special cases, t = 1, u = 2m+ 1, r = 2m− 1 and s = 1 (m ∈ Z) give the

triples obtained in Solutions 1 and 2, and t = 2, u = 4n + 1, r = 2n and s = 4

yield the result of Solution 3.

As a related problem, finally we examine the Diophantine equation
(

x

4

)

+
(

y

4

)

=

z2.

Problem 11. Show that the Diophantine equation
(

x

4

)

+

(

x+ 1

4

)

= y2

has infinitely many solutions, where x ≥ 4, x, y ∈ Z .

Solution. Expanding the terms on the LHS of the equation we obtain

x(x− 1)(x− 2)(x− 3) + (x+ 1)x(x− 1)(x− 2) = 24y2 .

After applying the possible cancellations we get

x(x− 2)(x− 1)2 = 12y2 = 3(2y)2 .

The factor x(x − 2) on the LHS of the equation is relatively prime to (x − 1)2,

therefore the equality holds iff x(x − 2) = 3u2 for a suitable integer u. This last
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equation can be written in the form (x − 1)2 − 3u2 = 1. Here we use again the

theorem about Pell’s equation (another equivalent shape), which can be proven

with the argument seen in Problem 2: If (α0, β0) is a non-trivial solution of

α2 − 3β2 = 1, then we get infinitely many integer solutions (αn, βn) of the form

αn =
(α0 +

√
3β0)

n + (α0 −
√
3β0)

n

2

and

βn =
(α0 +

√
3β0)

n − (α0 −
√
3β0)

n

2
√
3

.

In our case α0 = 2 and β0 = 1, so the formulas

αn =
(2 +

√
3)n + (2−

√
3)n

2
, βn =

(2 +
√
3)n − (2−

√
3)n

2
√
3

.

give infinitely many solutions.

For example n = 3 implies α3 = 26, from which we get x = 27. In fact,

(

27

4

)

+
(

28

4

)

= 1952 .

Didactical analysis, conception

Teaching in a secondary school (not in a class specialized in maths) we gen-

erally deal with Diophantine equations in 2–3 ninety minute workshop sessions

in a study circle. Of course, this may slightly vary according to the participants’

mathematical interests and the teacher’s personal preference. Fortunately, some

excellent books and exercise collections ([1], [3]) are available for the teaching of

Diophantine equations, and also an increasing number of Diophantine problems

occur in the Hungarian maths competitions which serve as a good basis for the

investigation of this topic outside the framework of the compulsory curriculum.

In the paper we make an attempt to introduce some new types of interesting

problems not forming part of the usual Diophantine agenda (linear equations,

pythagorean triples, and proving the unsolvability via remainders with respect to

a suitable modulus) which may be challenging for the best students.

These problems, similarly to the ones appearing in [4], are related to the

binomial coefficients, and can thus greatly help the elaboration of this impor-

tant mathematical notion. They can also help students to experience their own

“discoveries” and to examine some further arithmetic connections of binomial co-

efficients. The author strongly believes in the importance of encouraging students
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to study literature and to do some sort of research in the topic (under appropriate

supervision of a tutor, of course).

When compliling the exercises of the paper — in addition to the issues above

— we tried to pay attention to the gradual approach, as well. In Problem 1 the

method of factorization occurs (which is well known by the students), and then

(and also in Solution 4 of Problem 10) the so-called four number theorem (see [7])

is suggested which — despite of its simplicity — can be well used to solve several

problems of competitions (see [1]), and makes possible some elegant proofs during

the workshops.

Problem 2 (similarly to Problem 11) illustrates well that sometimes we have

to be contented with establishing an infinite number of non-trivial integer solu-

tions, since finding all solutions is beyond our reach, at least in highschool. The

handling of Pell’s equation which we discuss here in detail, demonstrates in an

excellent way that though the equation deals solely with integers, the natural

method to treat it is to use real numbers, and to return to the integers only when

exhibiting the solutions. This can be an ideal preparation for the discussion of

“casus irreducibilis” in connection with cubic equations, where all the coefficients

and roots are real numbers, but in order to establish these roots we have to make

use of complex numbers.

Problem 3, and especially Problem 10 show that sometimes it is worth to start

with simpler questions, because the solution of special cases is often much easier.

It is a typical example that prescribing some simple relations for the variables still

allows us to find infinitely many non-trivial solutions. Moreover, in certain cases,

this way we can establish different types of solutions using substantially different

parametrical forms. To arrive at the general solution, as it is shown in Lemma

7, sometimes we have to go beyond the secondary school curriculum. Quadratic

forms have further profound and complicated applications (see [2]), we mention

here just two of them: which integers can be represented as certain special forms

(see the remark above), and how can we characterize the (prime) divisors of

numbers of the form, say, a2 + 2b2. The topic is worth to be considered, because

in several cases these theorems facilitate the proof of the fact that a specific

Diophantine equation has no solutions.

At this point — with very good students at hand — we can allow ourselves to

have a glimpse at some more complicated equations, for example using Gaussian-

integers (see [5]). Of course, at this level we have to give up the precise proofs

covering all cases, but using a few theorems from higher mathematics we can

demonstrate some interesting and beautiful statements to the students. (For
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example: Fermat’s Christmas Theorem, and even the general result about which

numbers are the sum of two squares, or new proofs or generalization of exercises

solved earlier, e.g. in E(
√
−2)).

As a summary, we can state that another benefit of teaching Diophantine

topic lies in showing the students how to find connections between various prob-

lems, how to combine different methods, how to generalize, how to ask new

questions, even if some of them are beyond our proving capacities. During this

teaching process, the teachers themselves learn a lot, and develop their own new

methods, which is indispensable for all colleagues working with talented students.
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[7] P. Erdős and J. Surányi, Topics in the Theory of Numbers, Springer, 2003, 13–14.

[8] K. Ono and K. Soundararajan, Ramanujan’s ternary quadratic form, Inventiones
Mathematicae (1997), 415–454.

[9] L. Costica, Methods of solving Diophantine equations in secondary education in
Romania, Science Journal of Education 2, no. 1 (2014), 22–32.
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