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Abstract. Within the context of secondary and tertiary mathematics education, most
so-called learning technologies, such as virtual learning environments, bear little rela-
tion to the kinds of technologies contemporary learners use in their free time. Thus they
appear alien to them and unlikely to stimulate them toward informal learning. By con-
sidering learning technologies from the perspective of the learner, through the analysis
of case studies and a literature review, this article asserts that the expectation of these
media might have been over-romanticised. This leads to the recommendation of five
attributes for mathematical learning technologies to be more relevant to contemporary
learners’ needs: promoting heuristic activities derived from human history; facilitating
the shift from instrumentation to instrumentalisation; facilitating learners’ construction
of conceptual knowledge that promotes procedural knowledge; providing appropriate
scaffolding and assessment; and reappraising the curriculum.
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1. Introduction

1.1. Aim, assumptions and structure

The term ‘learning’ traditionally means the content which a student acquires

from a curriculum either inside the classroom or in their personal study time.

As we wish to emphasize the power of immersive and interactive environments

that the utilization of technology can create, our first assumption is not to place
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these restrictions on the term ‘learning’ but also to consider learning outside the

curriculum and in non-study times. Secondly, we stress the need to solve the

conflict between conceptual and procedural knowledge: does the learner have to

understand before being able to perform a task, or vice versa? ([1]) These aims

are consistent with the seven challenges, proposed by [1] for instrumental orches-

tration within technology-based learning environments: (1) Promoting collabo-

rative social constructions; (2) Linking of conceptual and procedural knowledge;

(3) Solving the dilemma between a systematic approach and minimalist instruc-

tion; (4) Relating instructional design and assessment to instrumental genesis; (5)

Promoting learning by design; (6) Revitalizing sustainable heuristics in human

history; and (7) Applying business principles to overcome the bad reputation of

mathematics.

Adopting the approach previously suggested in [2], we identify five recommen-

dations implied by these challenges. We provide and evaluate evidence supporting

them from associated studies, and shortly discuss the changing role of teachers

and the curriculum. We would like to make the reader aware that instead of con-

centrating on just one or two single issues at a time, the title requires discussion

of several perspectives simultaneously. The authors are sorry that the restriction

of the length of the article allows open up just the most crucial concepts in the fol-

lowing three sections. There are numerous well-known concepts (e.g. non-formal

and informal learning), the characterization of which can be easily found on the

Internet.

1.2. Mathematics interpreted through sustainable heuristic activities

When considering the learning of mathematics within constructivist para-

digm, instead of speaking about ‘learning environments’, it might be more rele-

vant to adopt the term investigation space (see [2], p. 1489) and [3]), whereby

the learning is considered rather as an investigation process - whether individ-

ual or collaborative - including both cognitive and psychological aspects. The

term ‘space’ indicates that this process is independent of time, place and for-

mal modes and emphasizes students’ own freedom and control. To consider how

mathematical knowledge and mathematical thinking enters human mind and life,

it is appropriate to recognize which heuristic activities have been sustainable in

history.

During his long-term study of the history of mathematics, Zimmermann ([4],

[5]) identified eight main activities which have led very often to mathematical

innovations over different times and cultures for more than 5000 years. We will
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henceforth refer to these as the Z-activities, represented in Figure 1. He was

inspired to create Figure 1 by an old picture from a book by Leibnitz, who in

turn had taken it from a 16th Century drawing by Clavius, representing parts

from the philosophy of Aristotle. The development of the Octagon must be seen

as an extension of Zimmermann’s research on mathematical beliefs and on the

history of problem solving during several decades. This has been carried out

using theoretical analyses of heuristic problem solving and the philosophy of sci-

ence and cognition. The meta-study ([6]) gives a comprehensive evaluation of

the Z-activities based on well-established criteria for the quality of research in

mathematics education (e.g. [7], [8], and [9]). They emphasize the significance,

rigor, and both theoretical and pragmatic relevance of the Z-activities, which can

be linked to Bishop’s ([10]) comprehensive analysis of educational consequences

from a sociocultural perspective, as his “concept-based components”: counting,

locating, measuring, designing, playing, and explaining. On the other hand, mea-

suring, for example, comprises almost all of the Z-activities and their linkage.

Figure 1. Activities and thinking tools which proved to be successful
in mathematics making ([5], p. 42)

Even though numerous other studies have detected general phases in history,

general styles of thinking in the history of science, and general laws in history of

mathematics (e.g. [11]), there are few studies that focus on such activities that

produced new mathematics over a long range of time and on evaluating these

activities from a cognitive perspective. When reflecting upon the Z-activities

from an educational point of view, it can be recognized in many empirical studies

(cf. e.g. [12]) that they are just as important for today’s mathematics and

science instruction, especially if the creative activities of pupils are stressed. The

interconnections between these activities, represented in Figure 1, correspond to

the general goal (of learning) to achieve a high degree of flexibility in thinking,
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and to foster connected, divergent thinking ([13]) in addition to mastering routine

activities.

To give a simple example in children’s everyday life: You have to evaluate

in a few seconds in a pizzeria queue, which of the two drinks would be cheaper

per unit: 3 dl for 4 Euro, or 2 dl for 3 Euro? Instead of struggling with applying

fractions (which would mean staying at the calculate-corner in the octagon), an

ancient strategy linking many other activities is not only viable but faster: Taking

the same amount 6 dl, we see immediately that the first one is cheaper.

Students use in their everyday life even much more sophisticated methods as

false position, successive approximation, for example. In spite of that, the school

neglects those strategies, not at least because the traditional Western history of

mathematics focuses upon ancient Greece, where the Euclidean and Archime-

dian tradition emphasized arguing, rules and using a conceptual structure ([14]).

However Zimmermann’s study concludes that pragmatic aspects (especially the

right-hand side of the octagon) have played the most important role. He found

this was particularly true in ancient China where there was much less interest in

mathematical proof.

1.3. Instrumental genesis and instrumental orchestration

When emphasizing that mathematics should be taught both theoretically (‘on

paper’) and in practice (such as ‘actual surveying in the field’), the well-known

Dutch mathematician Stevin ([15]) suggested that tools such as rulers, compasses

and right angles should be replaced by “fieldwork tools”. So, it is appropriate to

ask what else are the tools for contemporary students than technological ones.

Conflicting opinions over the use of technology in mathematics can be traced

back as least as far as the seventeenth century with the invention of the slide rule

([16]). Oughtred ([17]) argued against their use in true mathematics, claiming,

“the true way of Art is not by Instruments, but by Demonstration: and that it

is a preposterous course of Artists, to make their Schollers only doers of tricks,

as it were Juglers” (p. sig. A3 verso), whereas Delamain, his erstwhile student,

argued that mechanical aids helped people understand how to calculate ([16]).

An approach to resolving this conflict from the modern era of computer al-

gebra systems is the theory of instrumental genesis, introduced by [18] and [19],

based on a view of technology that distinguishes between artefacts and instru-

ments. According to [20], an artefact is a physical object but an instrument is

partly the physical object and partly the cognitive schemes that enable it to be

used to perform specific kinds of task; in other words, the artefact becomes an



Reappraising Learning Technologies from the Viewpoint of the Learning of Mathematics 225

instrument, or tool, for these tasks. We shall use the term instrumental genesis in

a wide sense to mean the development of information and communication tech-

nology (ICT) together with its usage for acquisition of conceptual and procedural

knowledge.

Instrumental genesis comprises of two parallel components: instrumentation

and instrumentalisation ([18], [19]). The former refers to a person’s ability to use

a tool. It is directed towards an artefact and describes the process by which it

becomes useful to the learner to accomplish specific purposes (that is, an instru-

ment). The latter refers to the way a person uses a tool to shape the actions and

the character of the knowledge constructed with the tool. It is directed towards

the learner and describes the process by which the possibilities and constraints of

the artefact shape his or her conceptual and procedural skills.

Instrumentation and instrumentalisation often naturally happen in students’

free time as they tailor their smartphone and tablet apps in creative way for their

own purposes. This suggests that mathematical instruction should shift its focus

from well-prepared classroom lessons to instrumental orchestration. We use this

term, introduced by [18] to mean intentional and quasi-systematic organisation

of available ICT tools within an appropriate paradigm of teaching and learning

to promote students’ instrumental genesis. Our examples will enlighten the three

components, defined by [21]: didactical configuration, exploitation, and didactical

performance. By using the term “quasi”, we emphasize two aspects from the

teacher’s side: firstly, the need to plan the learning environments systemically,

based on viable and sustainable theories of teaching and learning; and secondly,

the need to accept the principle of minimalist instruction (see [22]) because the

learning very often proceeds more or less spontaneously. The example in Section

2.2 illustrates how the integrated environment of a computer algebra system (CAS)

and a dynamic geometry system (DGS) (see [23]) allow casual playing between

mathematical representations, offering a powerful tool for problem solving and

promotion of links between procedural and conceptual knowledge. Examples of

this kind of technology are [24], [25], and [26].

1.4. Promoting the links between conceptual and procedural knowledge

The discussion above leads us to ask: Which kind of conceptual and proce-

dural knowledge might be attainable through instrumentalisation? When scaf-

folding the learning of procedures and operations in mathematics, one of the key

questions is how to promote the acquisition of both of these knowledge types

whilst avoiding a polarization between recipe-orientated, methods-based teaching
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and an abstract conceptual approach. Instead of giving a cavalcade of researchers’

views here, we utilize the following characterizations in [27], based on a compre-

hensive literature review, and fitting the aims of our paper:

• Procedural knowledge (PK) denotes dynamic and successful use of specific

rules, algorithms or procedures within relevant representational forms. This

usually requires not only knowledge of the objects being used, but also knowl-

edge of the format and syntax required for the representational system(s)

expressing them.

• Conceptual knowledge (CK) denotes knowledge of particular networks and a

skilful “drive” along them. The elements of these networks can be concepts,

rules (algorithms, procedures, etc.), and even problems (a solved problem may

introduce a new concept or rule) given in various representational forms.

Their analysis reveals four views on causal dependencies between PK and CK:

• Genetic view : PK is a necessary but not a sufficient condition for CK.

• Dynamic interaction view : CK is necessary but not sufficient for PK.

• Simultaneous activation view : PK is necessary and sufficient for CK.

• Inactivation view : PK and CK are not related.

Based on these views, they define two pedagogical approaches, the developmental

approach and the educational approach. The first one is based on the idea that PK

precedes CK, whilst the latter assumes the opposite. They found support for the

former from the dominance of procedural knowledge over conceptual knowledge

in the development of mathematics, which they attributed to its makers primarily

being guided by pragmatic concerns. On the other hand, they use the latter as an

attribute of the term ‘education’. If we agree with their review that the main goal

of education is to develop both PK and CK and to make links between the two,

crucial questions are: firstly, what is the quality of technological application?,

and secondly, how do different technologies and pedagogical solutions affect the

relation between these two knowledge types? We will come to this question later

on when giving empirical examples.

1.5. Contemporary learners and informal learning

Numerous researchers have expressed their concern of e-learning systems,

such as virtual learning environments. For example, social networking sites are

rarely used for discussing academic content but more commonly for discussing
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social aspects of learning ([28]). [29] state that these sites appear for some con-

temporary learners alien as regards utilizing them for the learning purpose. As

remarked by [30], the digital natives ([31]) have become educational immigrants to

common types of educational technology. Thus, many educationalists have sought

to exploit technologies within education with which digital natives are familiar.

Apart from the importance of theory-based design (c.f. [32]), the effective use

of these technologies depends upon a sociocultural understanding of their impact

within learning. As regards games, the use of incremental learning content makes

games user adaptable, leading to psychological “flow” ([33]).

The well-known concepts non-formal and informal learning have been rec-

ognized as important ways of learning by numerous researchers and authorities,

such as [35]. By studying the relationship between technology and mathematics

education from five perspectives, [36] suggests that, “instead of speaking about

‘implementing modern technology in the classroom’ it might be more appropri-

ate to speak about ‘adapting mathematics teaching to the needs of information

technology in modern society”.

Most contemporary learners own a smartphone and have access to tablets and

games consoles. They are generally fluent with content creation and sharing via

social networking and both individual and multi-user digital gaming. Such uses of

technology for recreation in students’ free time inevitably also have an informal

learning element. Several authors, such as [31] and [37], have suggested that

technology educators should begin by appreciating students’ familiarity with such

technologies in an informal context as the basis for designing learning technologies

in a formal educational context. One expression of this is the serious games

movement (e.g. appearing in 10 references in [31]) which seeks to exploit students’

gaming familiarity for an educational purpose. An example of mathematical

serious games are those available from the Mangahigh website ([34]).

Before going to our remarks, we feel it is appropriate to look back on the

evolution of learning technologies.

1.6. An overview on the paradigms when utilizing learning technology

The theoretical discussions about the use of computers in education started

in the mid-1960s within Skinner’s ([38]) programmed learning. This involved de-

livering information in small segments, allowing self-paced learning, and provid-

ing immediate feedback. In the era of computer assisted instruction ([39]) the

computer was seen as a presenter of learning material, and monitored student

progress. The term computer-based learning ([40]) was later coined as if to pave
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the way for new paradigms of teaching and learning utilizing technology. Early

examples are instructional films, (such as [41]), that were used in the USA from

1908 ([42]).

The dominant educational approach used with educational technologies until

1980s was instructivist. The widening of the underpinning educational theory on

the use of computers in education led to broader terms such as e-learning and

technology-based learning ([43]) which generally refer to the learning of content via

any digital technology using any educational method. However, this has coincided

with a growing tendency to embrace the adoption of new technologies without

considering appropriate educational theory behind their effective use ([32]).

From a social perspective, the use of the term learning technology can be

traced back at least as far as 1976 ([44]). It is commonly seen as a contemporary

variant of the term educational technology which was first used by the US-based

Association for Educational Communication and Technology in 1972 and relates

to the facilitation and management of a range of learning resources ([45]). [46]

defines learning technology as, “the broad range of communication, information

and related technologies that can be used to support learning, teaching, and

assessment” (c.f. e-learning above).

Constructivism ([47]) and social constructivism ([48]) are widely recognised

as viable theories of teaching and learning. Constructivist approaches to learn-

ing with computers have been applied within environments such as microworlds

([49]) and simulations ([50]) which allow users to interact and develop conceptual

understanding about the effects of different virtual actions. Recently there has

been a growing emphasis on the use of mobile digital devices with the advent

of mobile learning ([51]). In addition, social interaction has been emphasised in

learning along with the creation and sharing of content ([37]) under the Web 2.0

paradigm shift ([52]), such as through blogs and wikis ([53]). These changes have

led increasingly to a view of learning being independent of time, place and for-

mal modes of instruction and of education being more learner-centred or learning

community-centred.

We are now ready to present our five Recommendations with empirical groun-

dings. Apart from research embedding in the Introduction part, the only empirical

examples fitting our viewpoint come from the research group of the first author.
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2. Recommendations

2.1. Promoting sustainable heuristic activities

To give a grounding, we need examples that show which kind of teaching and

learning, whether technology-based or not, supports or does not support the Z-

activities. Unfortunately, to our knowledge, the only empirical research that has

been carried out with an instrument to measure the Z-activities is that carried

out by the research group led by the first author. At the beginning of their

so-called ClassPad Project, Eronen and the first author ([54]) emphasized that

changing representation with CAS/DGS (c.f. [55]) not only enhances problem-

solving processes but also assists with concept formation and understanding. At

the beginning of the project, the unfamiliar ClassPad calculator was demonstrated

briefly to a class of Year 8 students (N=15) to give them opportunity to play with

it voluntarily during their summer holiday with concepts of Year 9 mathematics

(such as a linear function). Their only duty was to write a portfolio of reflective

notes if they worked with the tool. All these students accepted this opportunity

and played actively with the tool, and three of them also wrote portfolios.

To develop an instrument, each of the Z-activities was quantified by a 1 to

5 distance from the centre of the octagon to denote the strength of the activity

(see Figure 2). Thus, a Likert scale instrument was developed to measure:

• Math-profile: The strength of each activity the student thinks is needed when

using or learning mathematics.

• Identity-profile: How good the student thinks he or she is in performing each

activity.

• Techno-profile: How strongly the student thinks a computer can assist in the

performance of each activity.

Figure 2 represents profile shifts of a student who was quite poorly motivated

to learn mathematics in classroom but worked voluntarily with ClassPad during

her summer holiday. Possible explanations for the profile shifts were explored

by interviewing the student who stated, “In May I could not even think to play

with the ClassPad in the summer holiday. However, I noticed, that it was very

capable for playing with mathematics.” Whilst a strong positive shift occurred

in her playing techno-profile, surprisingly there was also a negative shift in her

calculating profile. This could be explained by a link between this student’s

increasing awareness of the versatility of the technical tool and a widening of her

perception of the utility of a CAS tool than just for supporting calculation.
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Figure 2. Mean Z-profiles before (dashed) and after (normal) the stu-
dent’s ClassPad work. Math-profile on the left, Identity-profile in the
middle, and Techno-profile on the right ([54], p. 714)

Motivated by this surprising outcome, the first author and Eskelinen ([56])

wanted to find out how a group of 116 elementary level teacher trainees at the

beginning of their university studies in September 2012 thought they could do

each of the Z-activities (i.e. self-confidence) and how strongly they thought each

activity was involved during their mathematics lessons in school (i.e. a Math-

profile) and when using ICT, wherever and however it was used (i.e. a Techno-

profile). The underlying assumption of the study was when a certain activity is

present when a person does, sees or hears something, he or she gets some kind

of support for that activity in one way or another. The study found that the

support the subjects gained (in the sense of the assumption above) for the Z-

activities from their total usage of ICT was even more modest than what they

gained from their mathematics lessons in school (see Figure 3).

Figure 3. Mean profiles of 116 elementary level trainee teachers in
2012: Identity -profile (thick), Math -profile (thin), and Techno -profile
(dashed). The shaded polygon in the middle represents the Techno
-profile of a corresponding new group of 114 trainee teachers in 2015
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The outcome was reinforced with an extended instrument whereby each of

the Z-activities was divided into three sub-activities (see [56], 2014, p. 92-94).

A repeat study in 2015 with a different group of 114 elementary level teacher

trainees at the beginning of their university studies indicated a decreasing trend

in their view of ICT support (see the shaded polygon in Figure 3). There was

evidence of a decrease in find and play (p < 0.05), and construct (p < 0.001).

The latter also held for all sub-activities with p < 0.001.

When comparing Figures 2 and 3, the findings suggest that ClassPad cal-

culators were viewed among 8th grade students as a MLT in the sense of our

paper, whilst ICT was viewed among teacher trainees as only having recreational

value. However, collaborative working culture utilizing learning technologies in

the spirit of our paper during a course of mathematics didactics caused a pos-

itive shift in the teacher trainees’ views of ICT support. Figure 4 summarizes

their findings that in all Z-activities but playing and finding a significant increase

occurred. In the Math-profiles a significant positive shift occurred in ordering,

finding, playing, applying, and evaluating, whilst the Identity-profiles remained

quite constant. All the above-mentioned shifts were reinforced when using an ex-

tended instrument whereby every main activity was divided in three sub-activities

(see [56], pp. 92-94).

Figure 4. Shifts in elementary level trainee teachers’ the Math -profiles
(left) and Techno -profiles during a pedagogical course ([56], p. 91)

2.2. Promoting instrumentalisation

This title means that Mathematical Learning Technology (MLT) should al-

low students to modify their built-in knowledge to suit their particular needs.

This is justified by analysing verbal accounts of students’ thinking processes into
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how those two conceptions are related to each other. The analysis of reflec-

tive notes in students’ portfolios made this possible. To introduce empirical ev-

idence, we take an extract from the portfolio written by the student mentioned

in the previous Section (see [57], p. 88). The sample in Figure 5 illustrates the

simultaneous activation principle described below. By manipulating the equa-

tion (conceptual interpretation) spontaneously, the student explained how the

parameters affect the position and location of the line (procedural interpreta-

tion). As instrumentalisation means that the tool shapes the actions and the

character of the knowledge constructed with the tool, we notice that the stu-

dent made her own interpretation against the standard view: the line moves

along the horizontal axis. This finding appears surprising, as reported in [36]

(p. 3) about students’ and teachers’ poor metacognitive skills when working with

a simple identification task of a well-tailored learning program (downloadable

from http://wanda.uef.fi/lenni/programs.html): the subjects changed all

problem components at the same time just to get a mismatch and data overflow

without noticing essential things.

The equation is now y = 2x− 3.

I move into the origin the straight

line that becomes from the equa-

tion. When changing the equa-

tion to y = 2x− 5, the line moves

forwards to the positive x-axis.

By changing the equation to y =

2x−1, the line goes to same direc-

tion as before, but the distance is

smaller.

Figure 5. Example of instrumentalisation during spontaneous ClassPad work

2.3. Facilitating learners’ construction of conceptual knowledge that
promotes procedural knowledge

The study of Lauritzen ([58]) of 476 economics undergraduate students within

a mathematical context reveals two crucial factors in acquiring and applying

knowledge. Firstly, PK is necessary but not sufficient for CK; and secondly,

to be able to apply what they know, students also need CK. Combining these
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demands, we conclude that developmental approach needs to be combined with

educational approach (see Figure 5). The simultaneous activation of CK and PK

lies at the intersection of these two approaches. Therefore it might offer the most

promising perspective, especially regarding the usage of technology. Very often it

means changing the representation.

This Section’s title provides a warning against the belief that there is a short-

cut to applying knowledge. To establish this assertion we first need a compre-

hensive analysis how CK and PK are related to each other. Secondly, we need

empirical studies where an appropriate instrument to scaffold and measure CK

has been used, even within technology-based environments. The long-term MO-

DEM Project of the first author (see [1], [36], or [59]) offers a framework for

this, and the dissertation of Lauritzen ([58]) reinforces this assertion with a rigid

empirical study.

To pick up the core features of the MODEM framework, we refer to Figure

6. When planning a constructivist approach to the mathematical concepts under

consideration, the focus is on the left-hand side when the students try to interpret

a tailored problem situation based on more or less spontaneous PK. On the other

hand, when offering students opportunities to construct links between represen-

tation forms of a specific concept, the focus is on the right-hand box, in which the

stages of mathematical concept building are illustrated. In learning situations,

however, students must have freedom to choose the problems that they want to

learn how to solve, accompanied by continuous self-evaluation instead of relying

on the expressed guidance of teachers. The next Section includes an example to

solve this dilemma.

Figure 6. Interplay between the two approaches ([36], p. 3)

Eronen and the first author ([54], p. 707-708) were encouraged by the findings

represented in Section 3. They therefore planned and implemented the learning
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(which they referred to as instrumental orchestration) of a whole Year 9 math-

ematics class merely using the ClassPad calculator without any textbooks and

traditional homework. The longitudinal follow up during this stage of the project

provided opportunities to analyse students’ cognitive and affective development,

especially the relationship between their CK and PK when measured in a pre-test,

a post-test, and a delayed test.

The learning tasks for linear functions were planned according to the MO-

DEM framework. The students had complete freedom to choose a problem set

from the so-called problem buffet, and to decide how they would work during

the lessons. Students’ choices were recorded in order to find out how a quasi-

systematic framework could be used within a minimalist approach to instruction.

[54] reports, firstly, that students’ scores in almost all test items were signifi-

cantly higher after the working period than in the pre-test. For most of the test

items, these students’ scores were higher than those of students even at the end

of junior high school, after gaining conventional mathematics teaching (see [1]).

Secondly, these students’ scores (especially in the production tasks) were even

better in the delayed test after three months.

The positive nature of these results somewhat contradicts [60] that minimally

guided instruction is less effective and less efficient than other instructional ap-

proaches. Eronen ([3]) elaborates on what had actually happened during the

learning processes, and what might have contributed to the positive results. His

findings suggest that optimal student-centred learning emphasizes students’ free-

dom to choose learning objectives and working methods in problem-based socio-

constructivist technology-based environments, in which open questions about

both mathematics and technology are solved in collaboration between students

or between student teams. Even though students proceeded in a way that leads

to unexpected situations (cf. [61]), it was found that learning to link conceptual

and procedural knowledge could be organized successfully within this framework.

2.4. Providing appropriate scaffolding and assessment

Instrumental genesis changes the essence of mathematics education so radi-

cally that instrumental orchestration and assessment should be considered from

a new perspective. As [27] and [59] emphasize, instead of as testing, assess-

ment should be interpreted in a global sense as the planning and control of the

instrumental orchestration during the whole learning process. It should reflect

aspects emphasized in the titles of the former sections. However, even though in

many countries the obstacles to using modern technology in both teaching and
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assessment have been removed, at least formally, most tasks used in teaching and

examinations are of a quite degenerate type, providing the starting point and

concepts, and usually at least the name of the method. The student has to find

the end point, namely the correct solution. [57] discusses in detail why this type

of task is not only almost opposite to authentic problems occurring in real life

but causes a dead end when used for teaching or assessment purposes.

The ClassPad project gave possibilities to analyse new kinds of tasks, includ-

ing appropriate tutoring. Even though Sections 2 and 3 might give the impression

that students could automatically use technology in a sophisticated way during

their free time, it is important to emphasize the role of the investigation problems

that the teacher (Dr Eronen) gave the students. Thus, an appropriate tutoring

was intrinsic, at least as regards the psychological meaning of the problems. The

fact that the teacher had gained educational psychological information on his stu-

dents over several years was crucial regarding the problem posing. As soon as the

work was extended to 9th grade in the classroom, several pedagogical variables

were involved. Therefore the instrumental orchestration was carefully planned to

combine quasi-systematic and minimalist approaches, as reported in detail in [3].

The examples in Section 2 show what usually happens if an appropriate in-

strumental orchestration is missing: students appear to use technology for social

purposes, i.e. as a source of entertainment. This causes concern regarding the

populist terms “flipped classroom” and “flipped learning” ([62]). The question of

whether to flip schoolwork to homework or homework to schoolwork is somewhat

irrelevant in the spirit of our paper. The flipped classroom philosophy of [62] shifts

instruction to a learner-centred model in which class time is dedicated to explor-

ing topics in greater depth and creating meaningful learning opportunities, while

educational technology, such as online videos, are employed to deliver content

outside of the classroom. This idea is not new and can be viewed as a reinvention

of the Computer Assisted Programmed System of Instruction ([63]). However, to

our knowledge, there are no empirical studies where the planned learning environ-

ments align with the spirit of our paper. Instead, there are numerous examples

showing that missing appropriate tutoring means missing appropriate behaviour

in problem solving situations (e.g. [64]).

In terms of the use of technology in mathematics education, [65] use a meta-

phor from motorcar racing to assert that school should be seen as a pit stop for

learning experiences rather than the place of the race itself. This requires a fun-

damental reconceptualization of education and the place in which it occurs, with

an emphasis placed on students’ self-motivated informal learning. Support for



236 Lenni Haapasalo and Peter Samuels

this view can be found from [66] which provides strong evidence that the ability

to solve creative mathematical problems is associated with general creative think-

ing and attendance of free time activities in mathematics. Also, [13] challenges

the modern educational paradigm which he claims promotes convergent thinking,

through its emphasis on reductive reasoning, organising students into separate

standardized subject classes by age, and individual standardised testing.

When testing the idea of the pit stop philosophy, the first author defined the

term in his web-based survey as follows:

“Imagine a car race. You might know that the pit stop is to serve the driver

by giving gasoline, new tyres and making necessary adjustments to the car. Let

us think that the school would be transformed to a pit stop where the teacher

would make, at first together with the students, a plan how a new topic would

be processed (cf. what a new racetrack requires), then would represent typical

problems of the topic, and would help students to understand the most important

concepts and methods of the topic. The students would investigate those problems

outside the school by sharing their ideas and questions among themselves and

with the teacher by using the Internet and social media. The problems would be

tailored to fit the utilization of smart phones, tablets, computers, etc. Instead

of normal teaching, the lessons is school would serve mainly as pit stops to give

support for processing the problems.”

The study among Year 9 students revealed that students think working within the

pit stop philosophy would offer support for many of the Z-activities, even more

than using ClassPad as the basic tool within normal teaching (see Figure 7).

Figure 7. ICT -support that students think they gain from ClassPad
work within current school teaching (normal line) and within the pit
stop philosophy (bold line). Mean score on the left and mode on the
right ([67], p. 39)
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2.5. Reappraising the relation between technology and curriculum

Numerous prominent researchers have emphasized the importance of infor-

mal mathematics and problem solving instead of merely collecting a set of basic

skills and concepts to be learned before any engagement can be attempted with

the actual practice of mathematics. Freudenthal ([68]), for example, argues that

mathematics should be seen as a mental art and should emphasize active problem

formulation and problem solving. Besides presenting the logical organization of

mathematical knowledge, the focus should be on developing the students’ ability

to construct and understand knowledge instead of merely collecting data. Stud-

ies (e.g. [69]) show that, besides not only being poor problem solvers, teachers

often also have strange belief systems about mathematics that they offer to their

students, politicians, and parents. This is in accord with the criticism of [70] and

fits Felix Klein’s ([71]) well-known ‘double discontinuity’. The case studies intro-

duced above, made by the first author and Eronen, agree with the increasingly

held view among researchers that less formal mathematics should be taught.

Even though in many countries technological development in education has

been highlighted and supported in many ways, it has been neglected in curricu-

lum design throughout the whole administration ([72]). Furthermore, teaching

organisations and the educational administration keep on doing exactly what [73]

warns against: placing excessive emphasis on what should be included in the

curriculum for different school grades. In conventional formal learning the goals

and control usually come from the teacher or textbook, regulated as more or less

exact routes. A totally contrasting approach is the open social construction of

knowledge, where a student or a student team sets the goals and objectives to

reach them. This collaborative innate learning happens very often in the most

natural way when a person does not have any extrinsic motivation to learn.

[37] promotes an educational approach to using technology that involves col-

laboration, creating projects, and donating meaningful results to others. Whilst

collaboration appears outside school as natural phenomena, in school it is of-

ten called ‘cheating’ ([13]). For example, Internet forums, such as in open soft-

ware development communities ([74]) often promote and maintain a collaborative

socio-constructivist working culture better than classroom-based work. Individ-

uals often set ambitious goals and commit to work to achieve them by donating

their results to each other. Knowledge gained through these processes is not ster-

ile without any transfer, but socially generated and viable, having both cognitive

and pragmatic relevance. The evaluation of success should be based on how the
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contribution of each individual helps the entire community to cope with a prob-

lem situation, without any special external rewards, incentives, or stereotypical

criteria.

Common to these characterizations of learning technology is an implicit as-

sumption that technology being used (correctly) by a typical student will enable

them to learn, or at least assist them in their learning. This assumption is often

itself based on the assumption that the context of learning technologies is the re-

placement or enhancement of a traditional educational setting in which learning

normally occurs. However, little attention has been paid to whether the learning

technology in itself is something with which a contemporary learner might choose

to engage if they were not enrolled on a course (assessed and accredited) for which

its use was either recommended or compulsory.

Most interpretations of Papert’s ([49]) ideas have been through virtual sys-

tems (such as turtle graphics) rather than physical robots. [2] argues that com-

bining an integrated mathematical construction and visualisation environment

such as GeoGebra with a physical robot encourages mathematical development.

They explain how such spontaneous research environments promote Learning by

Design, all the Z-activities, social and collaborative construction processes, links

between conceptual and procedural knowledge, interaction between systematic de-

sign and minimal interaction, adapting assessment to instrumentalisation within

society, and serve as inhibitor to students’ negative mathematical belief systems.

As regards assessment in the sense of testing, in many countries there is an

emerging trend to shift from paper and pencil assessment to electronic assessment.

[75] describes the recent development of a mathematical assessment authoring

system that is compatible with modern virtual learning environments. However,

these developments are very far from a well-organized curriculum where the main

purpose is not to increase skill but to promote appropriate links between con-

ceptual and procedural knowledge and promote the Z-activities. A curriculum

within a constructivist spirit would regard students as knowledge constructors

rather than knowledge users or content consumers (c.f. [76]). This would mean

shifting from Web 1.0 paradigm ([77]) to Web 2.0 paradigm ([52]), based on social

interaction with the creation and sharing of content.
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Discussion

To shift the instrumental orchestration in a learning context from a formal

instruction to an informal one such as blended learning, flipped learning, or the

pit stop philosophy advocated here, educators should be aware that instrumen-

talisation is a very natural thing in students’ everyday lives. In agreement with

[78], those informal environments should help learners develop social, cognitive,

and metacognitive dispositions that can be applied to learning.

The fact that institutions prefer to remain on the level of instrumentation by

trying to perform trivial routines in their computer classes, when at the same time

students utilize their instrumentalisation rather for entertainment, triggers a big

educational challenge. Our empirical examples illustrate the expertise required

by teachers. It is our belief that appropriate scaffolding must be based on empir-

ically tested sustainable but pragmatic pedagogical theories, such as MODEM,

for example.

In Recommendation 5 we warned against the view of assessment as testing

rather than interpreting. We view assessment as a dynamic process at every

stage of scaffolding, whether technology-based or not. Since the 1990’s, the im-

portance of assessment in improving mathematics education has been recognised

by the International Commission on Mathematical Instruction ([79]). However,

international comparisons like TIMSS ([80]) and PISA ([81]) have contaminated

serious efforts to respond this challenge by focusing on skill acquisition and stan-

dardised problems. Whilst the evidence presented to justify our assertion of five

recommendations for MLT has largely been based on the use of CAS-technology

we assert that it is generalizable to the use of integrated CAS/DGS and other

technology-based environments. We believe they have potential for application to

other subject domains sharing common features with the mathematical domain,

such as science in general. However, to consider instrumental genesis, for exam-

ple, from a wider perspective, it would be appropriate to consider whether the

same kind of sociocultural approach could be applied in other fields.

We hope that this paper stimulates a serious discussion about how technolo-

gies, such as tablets and mobile devices with their dramatically increasing num-

bers of applications, could be used as learning technologies in the reappraisal we

have presented. Our attributes combined with the discussion of the Z-activities

also encapsulate the main characteristics of navigationism ([82]) which empha-

sises learners’ opportunities to find, identify, manipulate and evaluate knowledge,

and to solve problems collaboratively. This agrees with the conclusion of [83]
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that an integration of technology, cooperative activity design and broader ed-

ucational practices can impact positively on students’ learning. On the other

hand, our empirical findings support the view of [32] which also warns against

“over-romanticism” regarding contemporary technological opportunities.

Educational practitioners might find the pit stop philosophy too progressive,

and even devaluating their role as teachers. However, using our metaphor of a car

race, we would like to ask which would a teacher prefer for their status: to drive

a car on behalf of a driver (i.e. a student); or to participate as a member of a

professional team, offering the best possible car adjustments and test track for a

driver (student)? An appropriate test track means the professional orchestration

of investigation spaces, whereby requirements for the psychological meaning of

problems and sustainable assessment methods are provided.

By using this metaphor we would like to stress that even modest hands-on

technologies can be used to promote conceptual and procedural mathematical

knowledge provided that the scaffolding fulfils viable research-validated pedagog-

ical theories. However, the design of an investigation space for such a purpose is

often much more demanding than planning and managing the development of a

new product. As the components relate, create and donate of the Engagement

Theory of [37] are suitable for this kind of purpose, we suggest that the create

component could be integrated with the Z-activities in a mathematical context.

When using constructivist views of mathematics teaching and learning (namely,

that concepts and procedures should at least be partially constructed by stu-

dents themselves) well-known concepts can be applied in one form or the other.

Then, the Z-activities show their theoretical and pragmatic relevance because

they carry a 5000 year heritage of interpreting how mathematical knowledge and

mathematical thinking came into human minds, life and action. The book [55]

offers examples of built-in scaffolding for the ‘Learning by design’ within the pit

stop philosophy. Our requirement that the design of investigation spaces should

be undertaken from the learners’ perspective is also consistent with Jonassen’s

([84]) view that those who learn most from the instructional materials are their

developers, not their users.
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