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On some problems on composition of
arithmetic functions

Ildikó Kézér

Abstract. The main goal of this paper is to investigate some problems related to the
commutativity of the composition of arithmetic functions. The concept of commutativ-
ity arises many times in high school maths, so it is natural to study the composition of
functions, namely the equation f(g(n)) = g(f(n)), where f and g are such well known
arithmetic functions as d(n), ϕ(n), σ(n), ω(n), or Ω(n). We study various aspects of
solvability: can we exhibit infinitely many solutions; can we determine every solution;
can we find suitable values in the range of both functions f and g for which the equation
is, or is not solvable, respectively. We need just the basic facts about the above func-
tions, and we use only elementary methods in the proofs. We present some interesting
questions, their solutions, and raise some unsolved problems. We found that this topic
can be discussed well in secondary school, mainly within the framework of group study
sessions as we had some classes with a group of kids in 9th grade. We summarize the
experiences of this experiment in the last section.
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1. Introduction

The concept of commutativity occurs many times in high school maths, more-

over, even earlier, in primary school maths. A really important situation arises in

connection with the composition of functions. If we talk about the composition

of geometric transformations or ordinary functions and note that composition is

always associative, it is natural to ask if there are any non-trivial pairs of func-

tions f and g, for which f(g(x)) = g(f(x)) holds for every x in the domain. For
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instance can the order of two reflections be changed without the result being dif-

ferent? Or: we call students’ attention not to make the mistake −x2 = (−x)2.

But of course they can find for example f(x) = |x| and g(x) = x2, for which

f(g(x)) = g(f(x)) is true for all x ∈ R. We do require commutativity, as well,

when we teach the concept of the inverse of a function, as the inverse of function

f is function g iff g(f(x)) = f(g(x)) = x for all x ∈ Df ∩ Dg (where Df denotes

the domain of function f).

It is natural to ask after studying the question of commutativity for ordinary

functions or geometric transformations, what can we say about the composition of

some well known arithmetic functions. We have simple formulas for these, while

their behaviors are multifarious. We will study the equation f(g(n)) = g(f(n))

from different aspects such as: can we characterize all solutions, can we have

infinitely many solutions, or can we find one solution at least. We will study also

the equation f(g(n)) = g(f(n)) = k, for a fixed k, where k ∈ Rf ∩Rg, asking the

same questions (Rf denotes the range of function f).

We note that there are many papers investigating the composition of arith-

metic functions from other aspects (see e.g. [4]-[8]), but our questions and results

seem to have no precedents.

We work only with the following arithmetic functions: d(n), which denotes

the number of divisors of n; σ(n), which denotes the sum of divisors of n; ϕ(n),

which denotes the number of positive integers up to n relatively prime to n; ω(n),

which denotes the number of different prime factors of n; and Ω(n), which denotes

the number of all prime factors of n (counted with multiplicity).

As we experienced, students were motivated by these types of questions. It

gave pupils a chance to make some experimentations, they experienced how to

develop and extend a question, how to conjecture the answer, and how to ask

new questions. We discuss these goals, the experiment itself, and the experiences

in Section 7.

2. Equations with complete characterization of solutions

2.1. Equation ϕ(Ω(n)) = Ω(ϕ(n))

Theorem 2.1.

Ω(ϕ(n)) = ϕ(Ω(n)) holds iff n = 2q, n = 3, or n = 2γ · 3q−γ , where q is a prime

and 1 ≤ γ ≤ q − 1.
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Proof

Sufficiency

If n = 2q, then Ω(ϕ(2q)) = Ω(2q−1) = q − 1, and ϕ(Ω(2q)) = ϕ(q) = q − 1.

If n = 3, then Ω(ϕ(3)) = Ω(2) = 1, and ϕ(Ω(3)) = ϕ(1) = 1.

If n = 2γ · 3q−γ , where q is a prime and 1 ≤ γ ≤ q − 1, then Ω(ϕ(2γ · 3q−γ)) =

Ω(2γ−1 · 2 · 3q−γ−1) = q − 1, and ϕ(Ω(2γ · 3q−γ)) = ϕ(q) = q − 1.

Necessity

First we show that no odd number n > 3 can satisfy the equation.

(i) Let 3 - n, i.e. n =

r∏
i=1

pi
αi , where r ≥ 1, pi > 3 and αi ≥ 1 for any i ∈ Z+.

On the right-hand side (further this will be denoted as RHS) we have

ϕ(Ω(n)) = ϕ

(
r∑
i=1

αi

)
≤

(
r∑
i=1

αi

)
, since ϕ(k) ≤ k for every k ∈ Z+.

On the left-hand side (further this will be denoted as LHS) we have

Ω(ϕ(n)) ≥

(
r∑
i=1

(αi − 1)

)
+ 2r =

(
r∑
i=1

αi

)
+ r, since ϕ(n) =

r∏
i=1

pi
αi−1 · (pi− 1),

and pi− 1 is an even number with at least two prime factors, hence Ω(pi− 1) ≥ 2

for any i ∈ Z+.

So

(
r∑
i=1

αi

)
+ r ≤ Ω(ϕ(n)) = ϕ(Ω(n)) ≤

(
r∑
i=1

αi

)
, a contradiction.

(ii) Consider now 3 | n, where n is not a power of 3, i.e. n = 3δ ·
r∏
i=1

pi
αi ,

where δ ≥ 1, r ≥ 1, pi > 3 and αi ≥ 1 for any i ∈ Z+.

RHS: ϕ(Ω(n)) = ϕ

(
δ +

(
r∑
i=1

αi

))
≤ δ +

(
r∑
i=1

αi

)
.

LHS: Ω(ϕ(n)) ≥ 1 + δ − 1 +

(
r∑
i=1

(αi − 1)

)
+ 2r = δ +

(
r∑
i=1

αi

)
+ r, since

Ω(ϕ(3δ)) = Ω(2 · 3δ−1) = 1 + δ − 1.

So again the RHS is always less than the LHS.

(iii) If n > 3 is a power of 3, i.e. n = 3δ, where δ > 1, then ϕ(Ω(3δ)) =

ϕ(δ) ≤ δ − 1, but Ω(ϕ(3δ)) = Ω(2 · 3δ−1) = δ.

Now we turn to the case when n is even.
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(iv) If n > 2 is a power of 2, i.e. n = 2γ , where γ > 1, then

ϕ(Ω(2γ)) = ϕ(γ) ≤ γ − 1, but Ω(ϕ(2γ)) = Ω(2γ−1) = γ − 1, so equality holds iff

γ is a prime q, so n = 2q .

(v) Assume that 3 - n, but n is not a power of 2, i.e. n = 2γ ·
r∏
i=1

pi
αi , where

γ ≥ 1, r ≥ 1, pi > 3 and αi ≥ 1 for any i ∈ Z+.

RHS: ϕ(Ω(n)) ≤ γ +

(
r∑
i=1

αi

)
− 1.

LHS: Ω(ϕ(n)) ≥ γ − 1 +

(
r∑
i=1

(αi − 1)

)
+ 2r = γ +

(
r∑
i=1

αi

)
+ r − 1.

(vi) Next assume that 3 | n and n has also a prime divisor greater than 3, i.e.

n = 2γ · 3δ ·
r∏
i=1

pi
αi , where γ ≥ 1, δ ≥ 1, r ≥ 1, pi > 3 and αi ≥ 1 for any i ∈ Z+.

RHS: ϕ(Ω(n)) ≤ δ + γ +

(
r∑
i=1

αi

)
− 1.

LHS: Ω(ϕ(n)) ≥ γ−1+δ−1+1+

(
r∑
i=1

(αi − 1)

)
+2r = γ+δ+

(
r∑
i=1

αi

)
+r−1.

(vii) Finally consider n = 2γ ·3δ, where γ ≥ 1, δ ≥ 1. Since ϕ(Ω(n)) = ϕ(γ+δ) ≤
γ + δ− 1 and Ω(ϕ(n)) = Ω(2γ−1 · 2 · 3δ−1) = Ω(2γ · 3δ−1) = γ + δ− 1, so equality

holds iff γ + δ is a prime q, i.e. n = 2γ · 3q−γ . �

2.2. Equation Ω(ω(n)) = ω(Ω(n))

Theorem 2.2.

Ω(ω(n)) = ω(Ω(n)) = k ⇔ n =

a∏
i=1

ri
γi with

a∑
i=1

γi = b, where ri are distinct

primes, b ≥ a are positive integers, and Ω(a) = ω(b) = k.

Proof

Sufficiency

If n =

a∏
i=1

ri
γi satisfies the above conditions, then Ω(ω(n)) = Ω(a) = k and

ω(Ω(n)) = ω(b) = k, as well.
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Necessity

Ω(ω(n)) = k holds iff n =

a∏
i=1

pi
αi , where pi are distinct primes with Ω(a) = k.

And ω(Ω(n)) = k ⇔ n =

s∏
j=1

qj
βj , where qj are distinct primes with

s∑
j=1

βj = b

and ω(b) = k.

Hence the solutions of Ω(ω(n)) = ω(Ω(n)) = k have to be of the form n =

a∏
i=1

ri
γi

with

a∑
i=1

γi = b, where Ω(a) = ω(b) = k and b ≥ a. �

This characterization also implies that we have infinitely many solutions in n for

every k ≥ 0.

3. Equations with infinitely many solutions

In this section we deal with those equations, when though we cannot charac-

terize all solutions but still we can give either infinitely many solutions in n for

every k ∈ Rf ∩Rg of the equation f(g(n)) = g(f(n)) = k, or, being more modest,

we can give infinitely many solutions in n of f(g(n)) = g(f(n)).

Theorem 3.1.

ω(d(n)) = d(ω(n)) = k has infinitely many solutions for any k ∈ Z+.

Proof

n = p1 · pq1−1
2 · pq2−1

3 · . . . · pqk−1−1
k · pk+1 · . . . · p2k−1 are solutions, where pi and

qj > 2 are distinct primes, since ω(d(n)) = ω
(
d
(

2 · q1 · . . . · qk−1 · 22
k−1−k

))
= k

and d(ω(n)) = d
(
2k−1

)
= k. �

Remark: in Section 7 we give a proof of one of the students which says that the

equation has no composite solution which would be square free.

Theorem 3.2.

Ω(d(n)) = d(Ω(n)) = k has infinitely many solutions for any k ∈ Z+.

Proof

n = p1 · pq
k−1−1

2 are solutions, where p1 6= p2 and q are primes, as

Ω(d(n)) = Ω
(
2 · qk−1

)
= k and d(Ω(n)) = d

(
qk−1

)
= k. �
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Theorem 3.3.

ϕ(d(n)) = d(ϕ(n)) has infinitely many solutions.

Proof

n = 2p−1 are solutions, where p is a prime, as ϕ(d(n)) = ϕ(p) = p − 1 and

d(ϕ(n)) = d
(
2p−2

)
= p− 1.

Also n = 2p−1 · 3p−1 are solutions, where p is a prime, as ϕ(d(n)) = ϕ(p2) =

= (p− 1) · p and d(ϕ(n)) = d
(
2p−2 · 2 · 3p−2

)
= d

(
2p−1 · 3p−2

)
= p · (p− 1).

Or n = 22
α−1 ·3 are solutions, where α ∈ Z+, as ϕ(d(n)) = ϕ(2α ·2) = ϕ(2α+1) =

= 2α and d(ϕ(n)) = d
(
22
α−2 · 2

)
= d(22

α−1) = 2α. �

Theorem 3.4.

ϕ(ω(n)) = ω(ϕ(n)) = 2 has infinitely many solutions.

Proof

n = 2k · 3 · 7 are solutions, where k is a positive integer, as ϕ(ω(n)) = ϕ(3) = 2

and ω(ϕ(n)) = ω
(
2k−1 · 2 · 2 · 3

)
= ω

(
2k+1 · 3

)
= 2. �

4. Equations, where f(g(n)) = g(f(n)) = k cannot be solved for all
k ∈ Rf ∩Rg

Theorem 4.1.

Equation ϕ(σ(n)) = σ(ϕ(n)) = 2m has no solutions for any m ∈ Z+.

Proof

Note that σ(n) = 2m ⇔ n =
∏
i

Mpi , where Mpi are distinct Mersenne primes

(this determines the possible values of m, for which the m-th power of 2 is in the

range of σ(n)).

This implies: σ(ϕ(n)) = 2m ⇔ ϕ(n) =
∏
i

Mpi , a contradiction, since ϕ(n) is

even, if n > 2, and also ϕ(σ(2)) 6= σ(ϕ(2)). �

Theorem 4.2.

Equation σ(d(n)) = d(σ(n)) = 7 has no solutions.

Proof

RHS: σ(d(n)) = 7 ⇔ d(n) = 4 ⇔ (i)n = p1 · p2, or (ii)n = p3, where p1 6= p2
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and p are primes.

(i) If n = p1 ·p2, then d(σ(n)) = d((p1+1) ·(p2+1)) = 7 ⇔ (p1+1) ·(p2+1) = q6.

Since there is at least one odd prime amongst p1 and p2, q = 2 must hold, which

implies that p1 and p2 have to be Mersenne primes: 22− 1, 23− 1, or 25− 1. But

the product (p1 + 1) · (p2 + 1) never equals 26.

(ii) If n = p3, then d(σ(n)) = d(p3 + p2 + p+ 1) = 7 ⇔ p3 + p2 + p+ 1 = q6 ⇔
p4 − 1

p− 1
= q6.

By [2], there is no solution of
xn − 1

x− 1
= ym, with integers x, y > 1 and m ≥ 2 if

n ≡ 0 (4). �

Theorem 4.3.

Equation d(ϕ(n)) = ϕ(d(n)) = 44 has no solutions.

Proof

We enumerate all possible forms of ϕ(n) determined by the RHS and the LHS,

respectively, and show that there is no match.

RHS: ϕ(d(n)) = 44 holds iff

(A): d(n) = 3 · 23, or

(B): d(n) = 22 · 23, or

(C): d(n) = 2 · 3 · 23.

These allow the following forms of n:

(A): d(n) = 3 · 23 ⇔ (A1) n = p68, or (A2) n = p21 · p222
(B): d(n) = 22 · 23 ⇔ (B1) n = p91, or (B2) n = p31 ·p222 , or (B3) n = p1 ·p452 ,

or (B4) n = p1 · p2 · p223
(C): d(n) = 2·3·23 ⇔ (C1) n = p137, or (C2) n = p51 ·p222 , or (C3) n = p21 ·p452 ,

or (C4) n = p1 · p682 , or (C5) n = p1 · p22 · p223 , where pi are distinct primes

and p is a prime.

These possible forms of n induce the following values of ϕ(n):

(A1) ϕ(n) = (p− 1) · p67, or (A2) ϕ(n) = (p1 − 1) · p1 · (p2 − 1) · p212
(B1) ϕ(n) = (p− 1) · p90, or (B2) ϕ(n) = (p1 − 1) · p21 · (p2 − 1) · p212 , or

(B3) ϕ(n) = (p1 − 1) · (p2 − 1) · p442 ,
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or (B4) ϕ(n) = (p1 − 1) · (p2 − 1) · (p3 − 1) · p213
(C1) ϕ(n) = (p− 1) · p136, or (C2) ϕ(n) = (p1 − 1) · p41 · (p2 − 1) · p212 ,

or (C3) ϕ(n) = (p1−1)·p1·(p2−1)·p442 , or (C4) ϕ(n) = (p1−1)·(p2−1)·p672 ,

or (C5) ϕ(n) = (p1 − 1) · (p2 − 1) · p2 · (p3 − 1) · p213 .

LHS: d(ϕ(n)) = 44 holds iff

(I): ϕ(n) = q43, or

(II): ϕ(n) = q31 · q102 , or

(III): ϕ(n) = q1 · q212 , or

(IV): ϕ(n) = q1 · q2 · q103 , where qi are distinct primes and q is a prime.

Comparison:

(1) n cannot be of the form (A1), (B1), (B3), (C1), (C3), or (C4), because no

prime can have an exponent higher than 43 in the factorization of ϕ(n).

(2) n cannot be of the form (B2) or (C2), because there cannot be two distinct

primes in the factorization of ϕ(n), where one exponent is at least 21, and

the other is greater than 1.

(3) n cannot be of the form (A2) or (C5), because ϕ(n) cannot assume any of

the listed forms (I)-(IV).

(4) n cannot be of the form (B4), because though ϕ(n) = (p1 − 1) · (p2 − 1)·
·(p3−1) ·p213 could be of the form ϕ(n) = q43 with p3 = q = 2 and with p1, p2
being Fermat primes, but if p1 = 2a + 1 and p2 = 2b + 1 are primes with a

and b being distinct powers of 2, then a+ b = 22 should hold, and there are

no such a and b. �

Remark: We can prove by similar arguments that ϕ(d(n)) = d(ϕ(n)) = 4s has no

solutions, if both s and 2s+ 1 are primes and 2s is not the sum of two powers of

2 less than 32. Similarly, ϕ(d(n)) = d(ϕ(n)) = 8s has no solutions, if both s and

4s+ 1 are primes and 4s is not the sum of two powers of 2 less than 32.

5. Conditional results

In this section we deal with the possibility of infinitely many solutions of the

equation f(g(n)) = g(f(n)) relying on some well known conjectures concerning

primes.
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Proposition 5.1.

To any Mersenne prime Mp there belongs a solution of equation

ω(σ(n)) = σ(ω(n)). The same holds for every prime of the form p2 + p + 1,

where also p is a prime.

Proof

If Mp = 2p − 1 is a Mersenne prime, then n = 2p−1 is a solution, since

ω(σ(2p−1)) = ω(2p − 1) = ω(Mp) = 1 and σ(ω(2p−1)) = σ(1) = 1, as well.

If q = p2+p+1 is a prime, where also p is a prime (e.g. p = 3, 5, 17), then n = p2

is a solution, since ω(σ(p2)) = ω(p2 +p+ 1) = ω(q) = 1 and σ(ω(p2)) = σ(1) = 1,

as well. �

Remark: If there exist infinitely many Mersenne primes or infinitely many primes

of the form p2 + p+ 1 with a prime p, then it follows from Proposition 5.1. that

the equation ω(σ(n)) = σ(ω(n)) has infinitely many solutions.

We note that Propositions 5.2.-5.3. indicate a similar statement.

Proposition 5.2.

For every odd prime of the form q =
p+ 1

4
, where also p 6= 43 is a prime there

belongs a solution of equation d(σ(n)) = σ(d(n)).

Remark: Though we know that there exist infinitely many primes p in the arith-

metic progression ak = 4k−1, we do not know if this occurs infinitely many times

with k being a prime.

Proof

n = 34 · p is a solution if p satisfies the above conditions, since

d(σ(34 · p)) = d(112 · (p + 1)) = d(112 · 4q) = d(22 · 112 · q) = 18, and

σ(d(34 · p)) = σ(10) = 18, as well. �

Proposition 5.3.

For every prime of the form q =
p+ 1

4
, where also p is a prime there belongs a

solution of equation Ω(σ(n)) = σ(Ω(n)).

Proof

n = 22 · p is a solution if p satisfies the above conditions, since

Ω(σ(22·p)) = Ω(7·(p+1)) = Ω(7·4q) = Ω(22·7·q) = 4, and σ(Ω(22·p)) = σ(3) = 4,

indeed. �

This leads us to a more general statement.
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Proposition 5.4.

If for all positive integer l there exist primes p > 2 and q for which q =
p+ 1

2l
holds, then equation Ω(σ(n)) = σ(Ω(n)) = k has at least one solution in n for all

k in the range of function σ.

Proof

Let n be of the form n = 2s · p, where p is an odd prime and s is a posi-

tive integer. We need σ(Ω(2s · p)) = σ(s + 1) = k. This determines at least

one value of s, since k is in the range of function σ. On the other hand,

Ω(σ(2s · p)) = Ω((2s+1 − 1) · (p+ 1)) = Ω(2s+1 − 1) + Ω(p+ 1).

Ω(2s+1 − 1) is determined by s, let it be Ω(2s+1 − 1) = t, i.e. we need

Ω(p + 1) = k − t. Since k ≥ s + 1 and Ω(2s+1 − 1) ≤ log2(2s+1 − 1) < s + 1,

therefore k − t ≥ 1 for any s ∈ Z+. If for all k − t − 1 = l ∈ N there exist

primes p, q for which p + 1 = 2l · q holds, then n = 2s · p is a solution, since

Ω(σ(n)) = Ω((2s+1 − 1) · (p + 1)) = Ω(2s+1 − 1) + Ω(p + 1) = t + Ω(2l · q) =

t + (l + 1) = t + (k − t − 1 + 1) = k. Also σ(Ω(2s · p)) = σ(s + 1) = k, this

determined the value of s. �

For the next statement, we need the fact that to each Fermat prime Fi,

0 ≤ i ≤ 4, there exists a prime pi such that
F pii − 1

Fi − 1
are distinct primes; we can

take e.g. p0 = p1 = p2 = 3, p3 = 23, and p4 = 7.

Proposition 5.5.

Let 0 ≤ k ≤ 4. Each set of Fermat primes Fi, 0 ≤ i ≤ k, with primes pi, where
F pii − 1

Fi − 1
are distinct primes, generates a solution of equation ϕ(σ(n)) = σ(ϕ(n)).

Proof

n =

k∏
i=0

Fi
pi−1 , where 0 ≤ k ≤ 4 is a solution if both pi and

F pii − 1

Fi − 1
satisfy the

above conditions.

RHS:

ϕ

(
σ

(
k∏
i=0

Fi
pi−1

))
= ϕ

(
k∏
i=0

F pii − 1

Fi − 1

)
=

k∏
i=0

(
F pii − 1

Fi − 1
− 1

)
=

=

k∏
i=0

F pi−1
i − 1

Fi − 1
·
k∏
i=0

Fi.
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The last equality follows from
F pii − 1

Fi − 1
− 1 =

(F pi−1
i − 1) · Fi
Fi − 1

.

LHS:

σ

(
ϕ

(
k∏
i=0

Fi
pi−1

))
= σ

(
k∏
i=0

Fi
pi−2 · (Fi − 1)

)
= σ

(
k∏
i=0

Fi
pi−2 · 22

i

)
=

= σ

(
k∏
i=0

Fi
pi−2 ·

k∏
i=0

22
i

)
= σ

(
k∏
i=0

Fi
pi−2

)
· σ

(
k∏
i=0

22
i

)
=

= σ

(
k∏
i=0

Fi
pi−2

)
· σ
(

22
k+2k−1+...+1

)
=

k∏
i=0

F pi−1
i − 1

Fi − 1
· σ
(

22
k+1−1

)
=

=

k∏
i=0

F pi−1
i − 1

Fi − 1
· (22

k+1

−1) =

k∏
i=0

F pi−1
i − 1

Fi − 1
· (Fk+1−2) =

k∏
i=0

F pi−1
i − 1

Fi − 1
·
k∏
i=0

Fi.

�

Remark: This is a generalization of the following observation by Golomb (see B42

in [3]): n = 3p0−1 is a solution of ϕ(σ(n)) = σ(ϕ(n)), if both p0 and
3p0 − 1

2
are

primes.

Indeed, ϕ(σ(3p0−1)) = ϕ

(
3p0 − 1

2

)
=

3p0 − 3

2
, and σ(ϕ(3p0−1)) = σ(2 · 3p0−2) =

= 3 ·
(

3p0−1 − 1

2

)
=

3p0 − 3

2
also. For F0 = 3 such prime exponents are p0 =

3, 7, 13, 71, and 103.

In the case of F1 = 5 and F2 = 17 such prime exponent is e.g. p1 = p2 = 3,

hence n = 36 · 52 and n = 32 · 52 · 172 satisfy ϕ (σ(n)) = σ (ϕ(n)).

Considering F3 = 257 and F4 = 65 537, if we check the prime exponents with

the help of WolframAlpha, it claims that for F3 e.g. p3 = 23, for F4 e.g. p4 = 7

works, so there are other solutions with four or five distinct prime factors, as well.

An open question is whether there exist infinitely many prime exponents pi for

which
F pii − 1

Fi − 1
are distinct primes, which would imply that equation ϕ(σ(n)) =

σ(ϕ(n)) has infinitely many solutions.
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6. Equation g(f(n)) = f(g(n)) = 1

This question can be solved easily in most cases, but it can also lead us to

some unexpected difficulties, as well.

Proposition 6.1.

ω(ϕ(n)) = ϕ(ω(n)) = 1 holds iff n = Fi, or n = Fi · Fj , or n = 2α, or n = 2α · Fi,
where α ∈ Z+ and Fi 6= Fj are Fermat primes.

Proof

ϕ(ω(n)) = 1 ⇔ (A) ω(n) = 1 or (B) ω(n) = 2.

(A) ω(n) = 1 ⇔ n = pα, where p is a prime and α ∈ Z+.

Since ω(ϕ(pα)) = ω((p− 1) · pα−1) = 1 ⇔ (p− 1) · pα−1 = qγ , where q is a prime

and γ ∈ Z+, this means:

(A1) in case of α = 1, then p− 1 = qγ ⇔ q = 2, so p = 2γ + 1 is a prime, which

implies n = Fi, or

(A2) in case of α > 1, then p = 2, which implies n = 2α.

(B) ω(n) = 2 ⇔ n = pα1
1 · p

α2
2 , where p1 6= p2 are primes and α1, α2 ∈ Z+.

Since

ω(ϕ(pα1
1 · pα2

2 )) = ω((p1 − 1) · pα1−1
1 · (p2 − 1) · pα2−1

2 ) = 1 ⇔
(p1 − 1) · pα1−1

1 · (p2 − 1) · pα2−1
2 = qγ , where q is a prime and γ ∈ Z+, this

means:

(B1) in case of α1 > 1, α2 > 1, we have no solution,

(B2) if α1 > 1, α2 = 1, then n has to be of the form n = 2α · Fi,
(B3) if α1 = 1, α2 = 1, then n has to be of the form n = Fi · Fj . �

We leave the easy proofs of the following statements to the Reader:

Proposition 6.2.

(i) ω(d(n)) = d(ω(n)) = 1 holds iff n = pq
β−1, where p, q are primes and β ∈ Z+.

(ii) Ω(d(n)) = d(Ω(n)) = 1 holds iff n = p, where p is a prime.

(iii) ϕ(d(n)) = d(ϕ(n)) = 1 holds iff n = 1 or n = 2.

(iv) σ(d(n)) = d(σ(n)) = 1 holds iff n = 1.
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(v) ϕ(σ(n)) = σ(ϕ(n)) = 1 holds iff n = 1.

(vi) Ω(σ(n)) = σ(Ω(n)) = 1 holds iff n = 2.

(vii) Ω(ϕ(n)) = ϕ(Ω(n)) = 1 holds iff n = 3, 4 or 6. (See also Theorem 2.1.)

(viii) Ω(ω(n)) = ω(Ω(n)) = 1 holds iff n =

q∏
i=1

pi
αi and

q∑
i=1

αi = rβ , where

pi are distinct primes, q, r are primes, as well, and β ∈ Z+. (See also Theorem

2.2.)

Problem 6.3.

Finally, concerning ω(σ(n)) = σ(ω(n)) = 1, we have only partial results.

σ(ω(n)) = 1 ⇔ ω(n) = 1 ⇔ n = pα, where p is a prime and α ∈ Z+.

ω(σ(pα)) = ω

(
pα+1 − 1

p− 1

)
= 1 ⇔ pα+1 − 1

p− 1
= qβ , where q is a prime and

β ∈ Z+.

For β = 2 it is known that the only solution is p = 3, α = 4, and q = 11 (see

[2]). There are some more facts about the solvability of the more general Nagell-

Ljunggren equation
xn − 1

x− 1
= ym, where integers x, y > 1 and n > 2, m ≥ 2, but

these do not help to find solutions with β > 2. It is not clear whether there exist

such solutions. See Proposition 5.1. for some partial results with β = 1.

7. Why and how to teach this stuff?

7.1. Why?

As we mentioned in the introduction, the concept of commutativity arises

many times in high school maths, moreover, even earlier, in primary school maths.

In the earliest years when children first meet positive integers and operations

with them, they experience that addition and multiplication are commutative

operations, however, subtraction and division are not (the same phenomenon

appears with the associative law, as well). Later they learn about set-theoretical

operations and realize that set-union, intersection, and symmetric difference are

both commutative and associative, but these are false for the difference. In parallel

with set-theoretical operations, pupils meet logical operations such as conjunction,
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disjunction, equivalence, and implication, and can decide which is commutative,

and which is not. In geometry we do examine the commutative and associative

laws when we teach vector operations (before we would teach that it is basically

R2), and students experience that addition and dot product are commutative,

subtraction and cross product are not (and addition is the only one amongst them

which is associative). In special maths classes we teach matrix operations, as well,

and it is a great opportunity to underline that though addition is commutative,

multiplication does not have the same property (but both are associative). Finally,

it will be clear in group theory that an operation being commutative is really not

something evident and natural.

So there are many opportunities to clarify the meaning of a commutative

operation, as it is an important concept, and in some cases we can even formulate

a necessary and sufficient condition of commutativity in a proper situation.

One of these opportunities arises when we work with functions. Dealing with

arithmetic functions might be the only opportunity to study discrete functions,

as well. One might think that handling the problem of commutativity could

be an easier question when working with discrete rather than with continuous

functions, but as we saw in Sections 3-6, this is not the case. Still, having partial

or conditional results, asking new questions, formulating conjectures, exploring

the world of these kinds of problems can be challenging, adventurous, and useful,

indeed, as we discuss it in detail in the next subsection.

7.2. How?

We present some details of the group study sessions held in this topic, high-

light some experiences in a non-chronological order, share some thoughts about

the goals, and add some didactic remarks, as well.

The circumstances

We had weekly one or two group study sessions with students in 9th grade.

They learn in a special maths program, which means they have at least six regular

maths classes weekly. Pupils have already learnt about arithmetic functions,

and possess the basic knowledge in this topic. They did not have a routine in

studying the composition of functions, but they needed just two examples to get

the concept right and use it confidently. The first session was devoted to refresh

memories (regarding definitions and formulas) and to rediscover some basic facts

about the arithmetic functions in question. Right after this, we proposed the

general problem to be studied, which students understood easily, and seemed to
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be motivated, enthusiastic, and eager to do some own research. Our goal was not

to teach something, but to let them explore things on their own. Of course, the

end of the school year being on the horizon, we did not expect them to do a lot

of homework and to dedicate many hours to do research alone, so most of the

explorations were guided by us. We planned the next session always based on the

experiences of the previous one, so the content could reflect on what happened

earlier. There were provisional plans for each class, but sometimes the kids’

questions and ideas took an unexpected turn, and we tried to walk down the

path they suggested rather than to follow the original scheme. The pupils got

a summary of what happened in class (and also some questions to think about

before the next meeting) via e-mail after each session.

The sessions

As students got a list of solutions n < 3000 of the equation Ω(ϕ(n)) =

ϕ(Ω(n)), and computed the standard form of these integers, it took them only a

few minutes to come up with a conjecture concerning the general solution. We

stated the theorem and verified the sufficiency in a joint work, but did not go

through the details of proving the necessity in Theorem 2.1., because it would

have taken too much time. We did discuss though that the proof would not

require more than an exhaustive distinction of cases and relying on the trivial

estimation ϕ(m) ≤ m valid for every m ∈ Z+. In later occasions, sometimes we

proceeded similarly to save some time by giving the answer instead of asking them

to find the solutions, but in other situations they did collect data themselves.

In Theorem 2.2. students suggested to examine the special case when

Ω(n) = ω(n) = q1 · q2 · . . . · qk with distinct primes qj . This implies

n = p1 · p2 · . . . · pq1·q2·...·qk , where pi -s are distinct primes. After they found

this type of solutions, we discussed – through a proper example – how to find all

solutions for a fixed k. Though they did not formulate the theorem in its most

general form, giving a sufficient and necessary condition, they did understand the

method how to find all solutions. We think, the emphasis was on the method

itself, and so did not force to state a formalized theorem. Studying this question,

students came up with some combinatorial ideas, as well. It was delightful to see

how well they can connect different fields of maths and ”think out of the box”,

indeed.

Comparing this latter theorem with the previously discussed Theorem 2.1.,

one of the goals was to point out the difference between the nature of the two

answers. In Theorem 2.1. we can give all solutions in an explicit form, while in
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Theorem 2.2. we give a characterization of all solutions. The latter might be a

bit unusual for students, but they should get used to it.

Turning to some problems in Section 3, we noticed that we might set up

the subgoal of finding infinitely many solutions if we are unable to determine all

solutions.

It was one of the highlights during these sessions when – right after the first

session – a student proved that a composite integer satisfying ω(d(n)) = d(ω(n))

in Theorem 3.1. cannot be square free. He did this on his own: he wanted to

solve the equation, wrote a program in C++ language, collected and analysed

data, set up a conjecture, and proved it to be right. Here are his theorem and

proof:

Theorem 7.2.1.

If n is a composite solution of ω(d(n)) = d(ω(n)), then there exists a prime p, for

which p2|n.

Proof

For a proof by contradiction, assume that n = p1 · p2 · . . . · pk with k > 1, k ∈ Z+

and distinct primes pi.

On the LHS we have ω(2k) = 1, but the RHS is d(k), which is a contradiction,

since the RHS must be greater than 1, if k > 1, k ∈ Z+.

Though his original aim was different, he did notice something and was able

to prove it. Also, it is very useful to deal not just with constructive or existence

proofs, but also with this type of ”non-existence” proofs, when we show that

something is impossible.

Considering a particular case of Theorem 3.2., some students were searching

solutions among the powers of 2. The reason for this might have been that we had

dealt with some problems before, when the powers of 2 played a useful role, and

encouraged by these experiences, they wanted to check whether we could easily

find some solutions in this case, as well. They proved that n = 2α is a solution

of the equation Ω(d(n)) = d(Ω(n)) = 2 iff α is a prime such that also
α+ 1

2
is a

prime.

We mention Theorem 3.3. just to demonstrate that though students identified

a lot of patterns right, of course they did have some false thoughts, as well. But it

is a self-evident part of the thinking process, and as teachers we think that it was

good and important for students to experience that the first idea is not always the
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right one, and this is not a problem at all. So they got that the first twenty solu-

tions of the equation ϕ(d(n)) = d(ϕ(n)) are 1, 2, 4, 6, 16, 24, 30, 36, 64, 384, 408,

480, 510, 1024, 1296, 1560, 1680, 2304, 2640, 3480, and they computed the stan-

dard form of these integers. Considering the powers of 2, first someone conjec-

tured that the exponents greater than one (2, 4, 6) are the consecutive terms in

the sequence of even numbers. This turned out to be wrong, because 28 is not a

solution. There was another suggestion upon the exponents 2, 4, 6, 10, that these

would satisfy a Fibonacci type recursion. This proved to be wrong, as well, since

226 is not a solution (but 212 is one). After discussing these false conjectures, we

proved that a power of 2 is a solution of the equation if and only if the exponent

is by one less than a prime. We cherish these kinds of brainstorming though, and

think that kids can learn a lot also from the mistakes. But of course, it is great

if they can find the right answer at the end.

We did not examine any of the problems in Section 4, though we discussed

all the details to prove Theorem 4.1. We think, however, that while studying

Theorem 4.1. for instance (or constructing solutions in Proposition 5.1. and

in Proposition 5.5., or solving Proposition 6.1.), it is important for pupils to

experience that those ”famous” primes they learned about in class can play a role

in their own work and not just in history books.

While chasing solutions, the question arises naturally whether there is at least

one suitable value k in the range of both functions f and g for which the equation

f(g(n)) = g(f(n)) = k is not solvable. We used the well known problem solving

strategy in Theorem 4.3.: if we have a problem and the set of possible solutions

(in this case: the set of standard forms of potential integers n) is finite, then we

”just” have to enumerate all possibilities and figure out if there exist solutions

among them or not. We use this kind of strategy in various situations in our

math studies, so this might be a familiar way for pupils. While we focused on

proving that there exists no solution in a particular case, we could try to make

some generalizations. We got some results of this type in the remark after the

proof of Theorem 4.3.

There are, of course, some situations when we cannot expect the answer from

the students. For example, part (ii) in the proof of Theorem 4.2. relies on a deep

theorem far beyond the reach of the students, but we can still tell them about

this result, as we did in a class when we talked about the propositions of Section

6.

We have some conditional results in Section 5. We think that it is really

useful to talk about these kinds of issues, since there are many such important
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results in mathematics, e.g. lots of papers begin with: ”Suppose the Riemann

hypothesis is true...”. From this section we went through the proof of Proposition

5.5. In a way it was a little summary of the research: we formulate the question,

read some facts about it in the existing literature, use some software to collect

data, organize these data, identify some patterns, conjecture some more general

solutions than given in [3], and prove them to be right by using the well known

recursion for these primes. It was another great opportunity to demonstrate that

these ”famous” primes can actually play a role in our ”everyday” problem solving,

and it also gave us a chance to connect seemingly remote parts of mathematics.

We discussed this theorem in the last session and shared some personal thoughts

on how a new result can be born.

Finally we mention, that it was useful to investigate also the less complex

problems of Section 6 during an earlier session. This gave the students some

self-confidence, as they could verify Proposition 6.2. without facing any major

difficulty. It was a bit harder to deal with Proposition 6.1. where it is not that

difficult to set a conjecture but the proof required a thorough examination, one

of the pupils got even somewhat lost, but finally could get through with some

help. Anyway, the above proofs were accessible and easily understandable for

the students. It was interesting to see after solving these equations more or less

easily, that the last variant Proposition 6.3. – which played a role also in the

proof of Theorem 4.2. – is an unsolved problem. This makes clear that there is

definitely plenty of room for more research, and there are many open questions

in this topic, as well.

7.3. New horizons to be conquered

There are many directions to ask entirely new questions or to generalize some

previously obtained results. We show a few such examples below.

7.3.1. The following natural question arises: can we define pairs of functions f

and g, where f(g(n)) = g(f(n)) holds for all n ∈ Z+? This clearly holds if f = g,

or g is the identity. The good students can find the general scheme f = h(k) and

g = h(l), where h(m) means the composition of m copies of h. But there are many

other examples, as well; students might come up with a solution, like:

f(n) :=


1 if n is even;

2 if n is odd.

,
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and

g(n) :=



n if n ≤ 2;

2k if n > 2 is even;

2m− 1 if n > 2 is odd.

where k and m are fixed positive integers.

We can ask also the other extreme situation, when f(g(n)) = g(f(n)) does not

hold for any n ∈ Z+, except perhaps for n = 1.

7.3.2. In Theorem 3.4. we studied equation ϕ(ω(n)) = ω(ϕ(n)) = 2. Can we find

infinitely many solutions in n of ϕ(ω(n)) = ω(ϕ(n)) = k for every k ∈ Rf ∩Rg?
Let’s consider e.g. k = 8. Equation ϕ(ω(n)) = 8 holds iff ω(n) = 15, 16, 20,

24, 30. Choosing e.g. ω(n) = 15, i.e. n is of the form n = pα1
1 · p

α2
2 · . . . · p

α15
15 ,

where primes pi are distinct, can we give the suitable values of primes pi and

exponents αi, so ω(ϕ(n)) = 8 holds, as well?

First – as we use this problem solving strategy in class, too – we simplify and

specialize the problem, and search for solutions if p1 = 2, α1 ≥ 1 and α2 = α3 =

. . . = α15 = 1, so n is of the form n = 2α1 · p2 · . . . · p15, for which the product

ϕ(n) = 2α1−1 · (p2 − 1) · . . . · (p15 − 1) has to have eight distinct prime factors.

Let primes pi be defined as follows: p2 = 2β1 + 1, p3 = 2β2 · 3γ1 + 1,

p4 = 2β3 ·5δ1 +1, . . . , p8 = 2β7 ·17η1 +1, and p9 = 2β8 ·19ζ1 +1, where all the expo-

nents (from the Greek alphabet) are positive integers, so the product of the factors

pi−1 with 1 ≤ i ≤ 9 contains eight distinct primes. Now we have to make sure that

the factors pi with 10 ≤ i ≤ 15 do not add a new prime factor into ϕ(n). So let:

pi = 2ai ·3bi ·5ci ·7di ·11ei ·13fi ·17gi ·19hi+1, where ai ≥ 1 and the other exponents

(from the Latin alphabet) in pi are non-negative integers. There exist such primes,

e.g. p2 = 3, p3 = 7, p4 = 11, p5 = 29, p6 = 23, p7 = 53, p8 = 137, p9 = 1217 and

p10 = 5, p11 = 17, p12 = 257, p13 = 65 537, p14 = 13, p15 = 97.

This construction would work for any value in the range of ϕ – which would

also mean that there are infinitely many solutions in n with α1 being arbitrary

large – if there is at least one prime in classes of the first type and if there are

”some more” in some classes, as well.

7.3.3. In Theorem 4.1. we showed that the equation ϕ(σ(n)) = σ(ϕ(n)) = k

cannot be solved for every k ∈ Rϕ ∩ Rσ, since there is no solution if k is a

power of 2. There are other values in the range of both functions for which the
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equation has no solution. E.g. k = 6 is in the range, i.e. σ(5) = 6 = ϕ(7), but

ϕ(σ(n)) = σ(ϕ(n)) = 6 has no solution, because σ(ϕ(n)) = 6 could hold only if

ϕ(n) = 5, which is a contradiction, since ϕ(n) is even, if ϕ(n) > 1.

Generalizing this question, we can study the solvability of ϕ(σ(n)) =

= σ(ϕ(n)) = p + 1, where p and p + 2 are twin primes, like 5 and 7 in the

previous example. The values of p + 1 are in the range of both functions, since

σ(p) = p + 1 and p + 1 = ϕ(p + 2), as well, with p and p + 2 being primes.

The next question is if there exists a solution when p + 1 = 12? It is necessary

that ϕ(n) = 6 or ϕ(n) = 11. Latter is a contradiction, and since ϕ(n) = 6

holds iff n = 7, 9, 14, or 18, we have to check only four possible values of n

whether ϕ(σ(n)) = 12 also holds. As it turns out, n = 9 is the only solution, so

ϕ(σ(n)) = σ(ϕ(n)) = 12 holds iff n = 9. In Proposition 5.5. we claimed that

n = 32 is a solution of ϕ(σ(n)) = σ(ϕ(n)), now we have that it is the only solution

of ϕ(σ(n)) = σ(ϕ(n)) = 12.

Examining the equation ϕ(σ(n)) = σ(ϕ(n)) = p + 1, where p and p + 2 are

twin primes, we find that values of p + 1 for which there is a solution, occur

rarely, since there are only two among the first 40 twin primes: p + 1 = 12 and

p + 1 = 1092. The latter we have if n = 36, also mentioned in Proposition 5.5.,

and it is also the only solution of ϕ(σ(n)) = σ(ϕ(n)) = 1092.

How can students study these questions? Here we present a way of it, but it

is definitely not the only one. If pupils want to know if there exists a solution for

example when p+1 = 42, they can use GeoGebra to get the possible values of ϕ(n)

for which σ(ϕ(n)) = 42. They can find that σ(m) = 42 holds iff m = 20, 26, or

41. Of course, students could get these answers without any help, just calculating

these, but the aim here is not to exercise ”inverting” function σ, but to solve

the original equation. Since ϕ(n) is even, we only have to examine the solutions

of m = ϕ(n) = 20 and m = ϕ(n) = 26, respectively. At this point we can use

WolframAlpha to get the values of n, for which these equations hold. Equation

ϕ(n) = 20 holds iff n = 25, 33, 44, 50, or 66, equation ϕ(n) = 26 has no solution.

So we have five possible values of n, for which we have to check (using GeoGebra

again) if ϕ(σ(n)) = 42 holds, as well, and we get that none of the above listed

values satisfy the equation.

Thus students will probably conclude that it is pretty hard to get solutions

of this type (if there are more such solutions at all), but they should feel that it

was nice to give a try to this promising idea and should not consider it as a fiasco

despite of the modest results. And we can encourage them to find new paths to

explore new horizons, this is how research is done.
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