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Various systems in a single

mathematical model

Gábor Geda

Abstract. Our aim is to study differential equations and systems described by them
which have great historical importance and are considered to be fundamental on different
levels of education.

Due to their simplicity these are suitable for those who deal with this topic and
want to gain useful experience in this field.

Furthermore, our aim is to give these equations a general form which facilitates the
studying of the different models by computer even for an individual programmer. At
the same time it facilitates the use of different mathematical auxiliary-programmes.

By giving the equations this way we get a chance of studying the relations between
the individual systems.

Key words and phrases: nonlinear differential equation system, growth model, combat
model, prey-predator model, oscillation.
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1. Introduction

The different disciplines developed from each other during their historical

development.

However, during the 20th century such correlations have been discovered be-

tween the achievements of the different disciplines which vanished the strict bor-

ders between them.

This phenomenon led to a system-based approach which generalized the de-

scription of the different phenomena by using the techniques of mathematics.
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2 Gábor Geda

The differential equations proved to be a useful mathematical tool of the system-

theory. We think it is appropriate to study those possibilities which provide way

for approaching phenomena on the basis of system-theory by using certain tools

of computer technology.

To achieve this aim, we would like to give a system of non-linear ordinary

differential equations with constant-coefficients, which depends on the choice of

the coefficients and initial conditions, may be suitable for describing simple ex-

ponential growth, periodical phenomenon and any other changes which may have

importance in terms of education.

Our aim is to study some famous models which can be described by ordinary

differential equations (ODE). Various sorts of phenomenon are known in different

fields of science (chemistry, physics, biology, structure of material, ecology and so

on), which can be described in a similar way. Maybe the most famous non-linear

system is the Lotka-Volterra one. Though it was proposed to describe interaction

of two populations (predator-prey), in spite of this, it has been used and later

it was applied in other fields as well (e.g., in the field of Chemistry). It shows

that the different phenomena can be described in a similar way by the tools of

mathematics. Although it is one of the simplest non-linear systems, still it can

help to understand other realistic ones.

2. Mathematical Background

First, we consider the differential equations

Ẋ1(t) =
(

b1 − a11X1(t) − a12X2(t)
)

X1(t) + c1X2(t) + e1,

Ẋ2(t) =
(

b2 − a21X1(t) − a22X2(t)
)

X2(t) + c2X1(t) + e2,
(1)

(where a11, a12, b1, c1, e1, a21, a22, b2, c2, e2 are real constants and X1(t), X2(t)

are real functions). Afterwards we study the conditions under which they are

equivalent to certain well-known models. Regarding the limits of this paper, we

study only those cases which do not need special background knowledge.

2.1. Exponential growing (Malthusian Model)

One of the first researchers of this theory was an Anglican professor of history

at Cambridge University in England, Thomas Malthus (1766–1834) who studied

the population dynamics and proposed a differential equation to describe it. The
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Various systems in a single mathematical model 3

basic idea of his model based on the following fact: the more people live in a given

community, the more babies they will have. According to Malthus, the rate at

which a population grows is directly proportional to its current size

ṗ(t) = kp(t). (2)

Nowadays, over 150 years later it seems fairly obvious, but his idea was a

ground-breaking concept when he first published it. (Here p(t) represents the

population’s size at time t and k is the difference of the rates of birth and death.

If k > 0, we have a positive rate of change, population increases; whereas if k < 0,

then we speak about a negative rate of change, population decreases (Figure 1).)
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Figure 1. A typical curve of exponential growth. Case a: b1 = +0.3;
X1(0) = 10000; X2(0) = 0. Case b: b1 = −0.3; X1(0) = 10000;
X2(0) = 0.

Replacing relevant coefficients into (1), choosing suitable initial values, we

can transform our model

Ẋ1(t) = b1X1(t) (3)

in a similar form to Malthusian one, where

b1 > 0; a11 = 0; a12 = 0; c1 = 0; e1 = 0;

b2 ∈ R; a21 ∈ R; a22 ∈ R; c2 = 0; e2 = 0;
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4 Gábor Geda

and X1(0) > 0, X2(0) = 0 see (2), (3) and Figure 1. The Malthusian model can

describe the increase and decrease of a population well, particularly in the initial

period of the growth.

2.2. Logistic growth (Verhulst Model)

Pierre-François Verhulst (1804–1849) was a Belgian mathematician who gen-

eralized the Malthusian model by allowing for the fact that populations encounter

internal competition as they grow within a closed environment, and this compe-

tition has a tendency to clog the rate of growth (see Figure 2/a). His idea says

that while the population continues to grow as time goes on, the rate at which it

does this growth gets smaller

ṗ(t) = up(t) − vp2(t), (4)

where p(t) represents the population’s size at time t and u, v ∈ R.

t

X
1
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Figure 2. A typical curve of logistic growth. Case a: b1 = 0.3; a11 =
3 ·10−6; X1(0) = 2.0 ·103 ; X2(0) = 0. Case b: b1 = 0.3; a11 = 3 ·10−6;
X1(0) = 1.5 · 105; X2(0) = 0.

This is a slightly more realistic approach than that of Malthus, whose idea

actually predicts that populations will grow exponentially, and without termina-

tion — a prospect that defies physical limitations. (Malthus was aware that this

kind of growth could not continue, so he was really frightened of the whole thing

as he looked forward to overpopulation and global famine.)
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Various systems in a single mathematical model 5

When we apply the following values of coefficients and initial values in the

proposed equations (1), we can transform our general model into a similar form

Ẋ1(t) =
(

b1 − a11X1(t)
)

X1(t). (5)

where
b1 > 0; a11 > 0; a12 = 0; c1 = 0; e1 = 0;

b2 ∈ R; a21 ∈ R; a22 ∈ R; c2 = 0; e2 = 0;

and X1(0) > 0, X2(0) = 0 see (5), (4) and Figure 2.

Verhulst’s Model can handle not only the size of population at time t, but also

the competition of the members of the population and that how many members

of the population can support the environment.

The logistic growth equation produces a sigmoidal curve when b1−a11X1(0)>0

(see Figure 2/a.). The growth of population is slow at first, then accelerates, and

finally slows as population size becomes big enough. Various sorts of phenomena

can be described by this model, independently of the fields of science (e.g.: ecology,

biology, economy, etc.).

2.3. Combat Models

Another interesting application of differential equations arises in the analysis

of warfare between two opposing forces (X1, X2). It was first applied by F. W.

Lanchester at the time of World War I.

In a combat model, Ẋ1(t) and Ẋ2(t) are called the loss rates of the given

armies. They consist of the combat loss rates (due to the enemy’s attacks) and

operation loss rates (due to ordinary attrition not attributable directly to the

enemy, examples might be accidents, plane crashes, deaths due to disease, etc.).

In a real situation reinforcement or withdrawal can happen. In our model they

could be represented by values of ei (ei > 0: reinforcement; ei < 0: withdrawal,

but it will be disregarded in the following and we will consider them as 0). In the

following, we will consider three possible situations.

• The Conventional Combat Model

. . . in which both armies wage war against each other using conventional

methods

Ẋ1(t) = b1X1(t) + c1X2(t),

Ẋ2(t) = b2X2(t) + c2X1(t).
(6)
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6 Gábor Geda

b1 < 0; a11 = 0; a12 = 0; c1 < 0; e1 = 0;

b2 < 0; a21 = 0; a22 = 0; c2 < 0; e2 = 0;

and X1(0) > 0, X2(0) > 0) see (6) and Figure 3.
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Figure 3. Conventional Combat: b1 = −0.010; c1 = −0.5; b2 =−0.007;
c2 = −1.0; X1(0) = 70; X2(0) = 90.
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Figure 4. Guerilla Combat: b1 = −0.010; a12 = 0.2; b2 = −0.003;
a21 = 0.1; X1(0) = 90; X2(0) = 70.
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Various systems in a single mathematical model 7

• The Guerilla Combat Model

. . . in which the two opposing armies wage warfare by using guerilla tactics

such as sneak raids on the opposition’s base or ambush upon each other.

In this situation we suppose that both of the armies involved are waging

guerilla warfare on the other. A possible model for the scenario may be the

following system of differential equations

Ẋ1(t) = b1X1(t) − a12X1(t)X2(t),

Ẋ2(t) = b2X2(t) − a21X2(t)X1(t).
(7)

b1 < 0; a11 = 0; a12 > 0; c1 = 0; e1 = 0;

b2 < 0; a21 > 0; a22 = 0; c2 = 0; e2 = 0;

and X1(0) > 0, X2(0) > 0) see (7) and Figure 4.

t

X
1

X
2

-a

X
1

X
2

-b

Figure 5. Mixed Combat: b1 = −0.04; a12 = +0.022; b2 = −0.30;
c2 = −0.300; X1(0) = 90; X2(0) = 70.

• The Mixed Combat Model

. . . in which a guerilla force (X1) is in conflict with an army (X2) employing

conventional warfare methods

Ẋ1(t) = b1X1(t) − a12X1(t)X2(t),

Ẋ2(t) = b2X2(t) + c2X1(t).
(8)
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8 Gábor Geda

b1 < 0; a11 = 0; a12 > 0; c1 = 0; e1 = 0;

b2 < 0; a21 = 0; a22 = 0; c2 < 0; e2 = 0;

and X1(0) > 0, X2(0) > 0) see (8) and Figure 5.

2.4. Prey-Predator model

One of the most interesting applications of non linear differential equation

systems are the prey-predator problems. We should consider an environment

containing two interacting populations, a prey population, such as rabbits, and

a predator population, such as foxes. Obviously, it is rational to expect that the

two populations react in such a way as to influence each other’s size.

To describe changes of number of fishes in the Mediterranean Sea an Italian

mathematician Vito Volterra proposed an equation system like

Ṅ1(t) = β1N1(t) − α1N1(t)N2(t),

Ṅ2(t) = −β2N2(t) + α2N1(t)N2(t)
(9)

based on Umberto D’Ancona’s observations in twenty’s of last century. (here

αi, βi ∈ R+, i = 1 . . . 2, N1(t) and N2(t) represent the population size of preys

and predators at time t respectively.)

According to (9) the change of preys’ number (Ṅ1(t)) depends on two things.

The increase of preys’ number is determined only by N1(t), while the reduction

of preys’ number depends on both N1(t) and N2(t).

To get

Ẋ1(t) =
(

b1 − a11X1(t) − a12X2(t)
)

X1(t),

Ẋ2(t) =
(

b2 − a21X1(t) − a22X2(t)
)

X2(t)
(10)

replace the following values into (1) and use the proposed initial values.

b1 > 0; a11 ≥ 0; a12 > 0; c1 = 0; e1 = 0;

b2 < 0; a21 < 0; a22 ≥ 0; c2 = 0; e2 = 0;

and X1(0) ≫ 1, X2(0) ≫ 1) see (10) and Figure 6.

Using suitable initial values (X1(0) ≫ 1, X2(0) ≫ 1) and parameters (a11 ≥

0, a12 > 0, a22 ≥ 0, a21 < 0, b1 > 0, b2 < 0) we can get the well-known form of

predator-prey model

Ẋ1(t) =
(

b1 − a12X2(t)
)

X1(t),

Ẋ2(t) =
(

b2 − a21X1(t)
)

X2(t)
(11)

from (1).
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Figure 6. Prey-Predator model: b1 = +0.6; a11 = +0.5 · 10−7;
a12 = +0.3 · 10−4; b2 = −0.6; a21 = −1.5 · 10−5; X1(0) = 90000;
X2(0) = 2000.
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Figure 7. Prey-Predator model: b1 = +0.6; a12 = +0.3 · 10−4;
b2 = −0.6; a21 = −1.5 · 10−5; X1(0) = 90000; X2(0) = 2000.

2.5. Oscillation

Independently of fields of science (electronics, mechanics, structure of mate-

rials) the oscillation can be described in a similar way by using

Ẍ(t) = −
c

m
Ẋ(t) − ω2

0X(t) (12)

differential equation. That is why in the following we study the mechanical oscil-

lation.

If the spring is attached to an external force, the differential equation becomes

nonhomogeneous. (Where c > 0 (damping constant) characterizes the friction, m
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10 Gábor Geda

is the mass of moving object, ω0 is the characteristic angular frequency, and X(t)

is the deflection of object from repose at t.)

The (12) equation can be transformed into a system of differential equations

Ẋ1(t) = X2(t),

Ẋ2(t) =−
c

m
X2(t) − ω2

0X1(t).
(13)

• Harmonic oscillator

b1 = 0; a11 = 0; a12 = 0; c1 = 1; e1 = 0;

b2 = 0; a21 = 0; a22 = 0; c2 = −ω2
0 ; e2 = 0;

or
b1 = 0; a11 = 0; a12 = 0; c1 = ω0; e1 = 0;

b2 = 0; a21 = 0; a22 = 0; c2 = −ω0; e2 = 0;

and X1(0) 6= 0 or X2(0) 6= 0) see (12), (13)

Ẋ1(t) = c1X2(t)

Ẋ2(t) = c2X1(t)
(14)

and Figure 8.
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Figure 8. Harmonic oscillator: c1 = 1; c2 = π2; X1(0) = 20; X2(0) = 0.
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Various systems in a single mathematical model 11

• Free dumped oscillator

When the surroundings offer resistance to the spring, damped motion results.

b1 = 0; a11 = 0; a12 = 0; c1 = 1; e1 = 0;

b2 = −
c

m
; a21 = 0; a22 = 0; c2 = −ω2

0 ; e2 = 0;

and X1(0) 6= 0 or X2(0) 6= 0) see (12), (13),

Ẋ1(t) = c1X2(t),

Ẋ2(t) = b2X2(t) + c2X1(t),
(15)

and Figure 9.
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Figure 9. Free dumped oscillator (based on (1), made by Maple):
c1 = 1; b2 = −0, 5; c2 = π2; X1(0) = 20; X2(0) = 0.

3. Conclusion

As we can see, after giving the equations the modelled system is defined by

the initial conditions and the coefficients. The possible values of this (integer

or fraction, positive or negative . . . ), is defined by the feature of the modelled

system, so by the proper choice of above values we can give the models of different,

well-known systems.
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12 Gábor Geda

The state of the system at time t is characterised by the value X1(t) and

X2(t). By selecting the values of aij , bi, ci, we can take into consideration the

influence of the present state of the system on its future state. The effects of

outer factors can be described by ei.

For example in case of a reproduction model the number of the modelled

population may change by incoming entities (settling, immigration) or on the

contrary the population may decrease due to on outer factor. The situation is the

same in case of reproduction of endangered species in artificial condition so that

they can be taken back to their natural surroundings. The devices of numerical

mathematics facilitate the unified treating of the model mentioned above.

We do not deny the importance of the mathematical background standing be-

hind the topic, on the contrary, we would like to emphasize it, as the approaching

methods can not exist without them. We think that the spread of the computers

gives a chance to a practical, concept-based approach. We hope all this will pro-

vide appropriate experience for those are interested in to study this topic in an

exact way.

Depending on the level of education this can be realised by the use of some

mathematical auxiliary programme but easily algorythmised approaching meth-

ods can also be applied provided somebody has certain programming knowledge.

The further advantage of the equations is that they can be interpreted if somebody

is aware of direct proportionality so they are suitable for introducing mathemat-

ical models at an early stage of education.
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