
i

i

“marien” — 2008/9/1 — 17:42 — page 83 — #1
i

i

i

i

i

i

tmcs@inf.unideb.hu

http://tmcs.math.klte.hu

6/1 (2008), 83–109

Decision based examination of

object-oriented programming and

Design Patterns

Szabolcs Márien

Abstract. On the basis of our examination experience of Design Patterns the existing
interpretations and descriptions of Design Patterns do not realise a clear and under-
standable answer for their aims. The reason for this is that the existing interpretation
of the object-oriented paradigms is used for their description and formulation. In order
that clear answers could be found for the aims of using Design Patterns, a new concep-
tion of their interpretation has to be established. In order to create a new conception,
we have to analyze object-oriented paradigms.

According to our new conception the object-oriented methodology is based on the
elimination of decision repetition, thus sorting the decisions to class hierarchy, with the
help of which the data structure and methodology of decision options can be determined
by the subclasses of the given class. Sorting the decisions and decision options to a class
and its subclasses only the first decision case will be executed, which will be archived
and enclosed by instantiation of one of the subclasses. For the following decision cases
the archived decision result can be used without knowledge of which decision option was
used, so to say which subclass was instantiated, because it is enclosed by using the type
of the parent class.

The aim of the object-oriented technology is the elimination of decision repetition,
which can be realized by sorting the decisions. The derivations are the abstract defini-
tions of decisions, so the derivations can be interpreted as decision abstractions. The
Design Patterns offer recipes for sorting the decisions. With the help of the decision
concept the aim of Design Patterns can be cleared and a more natural classification of
Design Patterns can be realized.

Key words and phrases: object-oriented paradigms, inheritance, Design Patterns.

ZDM Subject Classification: P50.

Copyright c© 2008 by University of Debrecen

i

i

“marien” — 2008/9/1 — 17:42 — page 84 — #2
i

i

i

i

i

i

84 Szabolcs Márien

1. Motivation

The reduction of design failures can be achieved by experience in design.

The Design Patterns are realized as a result of collecting the design experi-

ence. The Design Patterns give recipes for the designers how the designing cases

can be solved appropriately and realize the professionally accepted answers for

the similar designing cases.

The professionally accepted Design Patterns are specified in [1].

In order to be able to use the experience gained from the Design Patterns, we

have to understand the Design Patterns. The formalizations of Design Patterns—

which try to represent their different aspects—aim at supporting their under-

standing. The formalizations are based on different description solutions with

graphical presentation concepts (LePus [4], PDL [10]).

In [1] the description of Design Patterns is based on natural language, ex-

amples and OMT diagrams [11]. The description of Design Patterns by natural

language and examples is not accurate [4, 5], so the essence of Design Patterns

is often missing from their descriptions. Therefore the profession has published

numerous solutions for a more accurate and formalized description of Design Pat-

terns. (LePUS [4], DisCo [5], BPSL [3]). But the new formalizations do not

engage in the interpretation of Design Patterns, so the existing interpretation is

untouched, therefore the aims of Design Patterns remain unclarified.

What is the reason for the lack of answers to the aims of Design Patterns? The

answer can be that the object-oriented paradigms, based on their present interpre-

tations, obstruct the extended examination of the object-oriented methodology.

According to the present interpretation of the object-oriented paradigms there

are no clear answers to the aims of Design Patterns. Thus the present interpre-

tations of object-oriented paradigms (Inheritance [9, 12, 13, 15], Polymorphism

[9, 12, 15], Encapsulation [9, 12, 15], Message-passing [9, 12, 13, 15]) and the

present interpretation of Design Patterns [1] must be reconsidered.

In [7] a new concept is invented for the interpretation of Design Patterns,

which states that the aim of Design Patterns is the elimination of the repetition

of the code and data redundancy. This new concept is proper as it tries to re-

interpret Design Patterns. However, it does not abstract from the object-oriented

paradigms, therefore the given answers are not holistic.

In this paper a new interpretation of the object-oriented paradigms is de-

scribed which can help us comprehend the aims of Design Patterns. According

i

i

“marien” — 2008/9/1 — 17:42 — page 85 — #3
i

i

i

i

i

i

Decision based examination of object-oriented programming and Design Patterns 85

to this concept a new classification of Design Patterns has been realized, which

is more natural than the existing ones.

2. Introduction

In this paper a new idea is shown, with the help of which the aims of Design

Patterns can be clarified. Accordingly the object-oriented paradigms will get new

interpretations.

What do the decisions of the program code decide? The decisions decide

the appropriate methodology and the data structures, so the data structures and

the functionalities are specified in the decision options of the decisions. The

decision options are the optional facilities of the decision. The decision option

consists of a data structure and methodology and a decision predicate by which

the appropriate decision option is determined in the decision cases. The main

concept of the object-oriented methodology is the elimination of the decisions’

repetition by sorting them to a “common place”. This “common place” is a

class with its subclasses, so the decision repetition can be eliminated by the class

hierarchy, which is a more abstract definition of the decisions.

After sorting the decisions, the decision is executed only once about the

necessary functionality and data structure. Based on the instantiation of the

subclass with the appropriate functionality and/or data structure the archiving

of the decision is realized. The result of the decision (the archived decision) as

an instance of the appropriate subclass can be used at the other decision places

(henceforth: decision cases) without knowing anything else about it. Accordingly

the decisions can be enclosed in class hierarchy.

The example shows that two decisions’ decision options are organised in the

same class hierarchy by sorting decision—Purchase. (The contraction conditions

of two decisions’ decision options are described below.) Using the Purchase class

hierarchy the decision can be used more times inclosing it into the purchase object

with the parent class type of the class hierarchy. First, the decision is used

for setting the decision specific data (purchase.setPurchaseInfo()) and then, for

printing them (purchase.printBill()). If decision option specific data structure or

methodology is required after archiving decision, type-casting has to be used for

achieving the subclass (according to the decision option) specific data structures

and methods.

The decision cases are important parts of the programs where the appropriate

decision option can be decided using the actual values in the decision predicates.

i

i

“marien” — 2008/9/1 — 17:42 — page 86 — #4
i

i

i

i

i

i

86 Szabolcs Márien

Diagram 1. Sorting decision into class hierarchy

In order that a program would be good structured, we should note the fol-

lowing:

i

i

“marien” — 2008/9/1 — 17:42 — page 87 — #5
i

i

i

i

i

i

Decision based examination of object-oriented programming and Design Patterns 87

• The methodology and/or the data structure of the decision options have to

be defined just once, so the code of the decision options will be defined just

once, except when the sorting of the decisions is impossible. It is important

to consider handling, because the introduction of the new decision option can

only be solved easily, if it is built in at just one place in the program.

• The decisions should not reoccur, so a decision—during the same running—

can be executed just once. The elimination of the decision repetition has two

aspects:

– The result of the decision—as the data structures or/and methodology

of the decision options—can be used several times.

– The result of the decision can be used several times afterwards, but

every time a new instance of the structures or/and the methodology of

the decision options is created. The archived decision can be used later

for creating an instance of the decision options.

• The decision predicates of decisions are equivalent, but altering in their de-

cision options’ definitions should not reoccur. (The decisions predicates are

equivalent if the evaluation of predicates is equal in every state.) This differs

from the previous case, because although the decision predicates are equiva-

lent, the methodology and/or the data structures of the decision options are

different. In these cases the decisions can be contracted too, so the definitions

of the different decision options can be defined by contracting them in the

same class hierarchy according to the decision predicates.

The Design Patterns give us recipes for accomplishing the above listed require-

ments of the good structured programs in order to reduce the decision repetitions.

The Design Patterns show us how the decisions can be archived and/or re-

lated.

According to the previously determined two main concepts of Design Pat-

terns, there are two groups of them:

• Decision archiving Design Patterns: If the data structure and/or the method-

ology of decision options of a the realized decision is used more times, the

inheritance/derivation as the main concept of the object-oriented technology

can assure using the result of the decision more times by enclosing the de-

cision to the class hierarchy (to the class and its subclasses). The enclosed

decision by derivation can be used more times by aggregation in a certain

scope. If new instances of the appropriate data structure and/or method-

ology have to be created according to the decision for every decision cases,

i

i

“marien” — 2008/9/1 — 17:42 — page 88 — #6
i

i

i

i

i

i

88 Szabolcs Márien

the archiving Design Patterns are used. The types of the products’ structure

determine which type of archiving Design Pattern can be applied. It means

that the associations between the data structures and/or the methodology of

the decision options determine the type of the usable Design Pattern.

• Design Patterns, which determine the relations of decisions: The structures

of the related decisions and the relations of them determine which Design

Pattern can be used. Therefore the second group of Design Patterns can be

realized based on the relations of Design Patterns.

The two main groups of Design Patterns can be classified separately.

In the next part of our paper the new interpretations of object-oriented

paradigms will be described based on new conception (Section 3). In Section

4 the basis of decision based theory can be seen. Based on this concept, a new

classification of Design Patterns can be realized (Section 5). In the final part

of the paper, in Section 6, an example shows how decision redundancy can be

eliminated by applying Design Patterns.

3. New interpretation of the object-oriented paradigms

“The object-oriented programming is a programming methodology. Programs

—which based on it—organize the collaboration of objects, which are instances

one of the classes. The classes are parts of hierarchies, which are built by inheri-

tance connections.” [15]

The most important object-oriented paradigm is inheritance. Inheritance can

improve the design logically and free it from code redundancy. [7]

In order that the analysis can be realized based on the decisions, it is im-

portant, how the basic paradigms of the object-oriented technology (inheritance

[9, 12, 13, 15], polymorphism [9, 12, 15], encapsulation [9, 12, 15]) and its basic

tools (class hierarchy, aggregation) can be joined to the decision based concept.

Inheritance as Decision Abstraction

The inheritance means that the data structure and the methodology—which

are defined in a class—can be inherited by its subclasses. The subclasses can de-

fine new data structures and methods as complements of the inherited properties

[13, 14] and can overwrite the inherited data structure and methodologies.

i

i

“marien” — 2008/9/1 — 17:42 — page 89 — #7
i

i

i

i

i

i

Decision based examination of object-oriented programming and Design Patterns 89

The decision can choose the running program code and the data structure.

In order that a decision can be archived, it has to be sorted, which means that

the data structure and methodology of decision options have to be defined in a

class hierarchy, as a parent class and its subclasses. The derivation/inheritance

ensures the enclosing and archiving of decision to the class hierarchy with the

help of which the definitions of the decisions can be contracted and the decision

repetitions can be eliminated.

According to this interpretation the inheritance—the class with its subclasses

—is the abstract form of the decision.

If the decision is defined in a class hierarchy, the following is realized:

• Elimination of the code repetition, which defines the decision options, so the

conditions of the decision options can be defined just once.

Diagram 2. Elimination of code repetition by decision sortingy

In Diagram 2 the definitions of decision options of decision 1 are duplicated,

which is eliminated by sorting them into a class hierarchy.

• Archiving the decision, with the help of which the result of the decision can be

used later on. Unless the required data structure or methodology is specified

by just one of the decision options.

In Diagram 1 the purchase object is created the type of which is Purchase

parent class, and it archives the decision about the purchase type (company

or private purchase). The archived decision about purchase is applied twice.

i

i

“marien” — 2008/9/1 — 17:42 — page 90 — #8
i

i

i

i

i

i

90 Szabolcs Márien

(purchase.setPurchaseInfo(), purchase.printBill()). The purchase object is

the instance of one of the subclasses of the Purchase parent class (Com-

panyPurchase, PrivatePurchase), by which the decision is archived and the

decision option specific data structure and methodology are accessible.

• Enclosing the decision. The result of the decision is not known in the next

decision cases. Except when the required data structure or methodology is

specified by just one of the decision options.

In Diagram 1 according to the decision about purchase type one of the sub-

classes (PrivatePurchase, CompanyPurchase) is instantiated (purchase ob-

ject) enclosing the decision. The type of the purchase object is the Pur-

chase parent class. In the following decision cases the decision is enclosed,

so there is not knowledge about the current decision option (about the type

of the instantiation). The type (one of the subclasses) of the instantiation

realizes the current decision option determining the current methods and

data structures of one of the subclasses, which are actually run by the pur-

chase.setPurchaseInfo(), purchase.printBill() method invocations, as it can

be seen in the following example code:

/** Setting the customer’s type. */

System.out.println("Billing for Company? ");

Purchase purchase;

if (sc.nextBoolean()) // Billing for Company?

purchase = new CompanyPurchase(pay);

else

purchase = new PrivatePurchase(pay);

• By the introduction of the new subclass, the decision options can be extended

easily. By creating a new subclass, just the first decision case has to be fit

for handling the new decision option, because the decision will be enclosed

on the next occasions. Unless the required data structure or methodology is

specified by just one of the decision options.

As can be seen, if the data structure or/and methodology is specified by just

one of the decision options, the advantages of the decision sorting can be realized

partly. The forceful usage of the polymorphism can realize the advantages of the

decision sorting as inheritance completely.

i

i

“marien” — 2008/9/1 — 17:42 — page 91 — #9
i

i

i

i

i

i

Decision based examination of object-oriented programming and Design Patterns 91

Polymorphism as Decision enclosing

Polymorphism means that the classes’ methods can be overwritten by their

subclasses, so the method—which gets the control—is selected just in runtime

(Late Binding) [12]. Late Binding—using another terminology—means that an

object sends similar messages to different objects (an instance of a class or its

subclasses) and a different code will be executed [9]. The message-passing (using

Smalltalk interpretation it is message-passing, but based on C++ terminology

it is method calling [9]) means that one object gets another object to execute a

method [13]. Late Binding depends on the programming-language or it is optional

(C++), because the resource effort is too large, but the maintenance of the code

will be reduced [14]. The polymorphism can increase the reusability, because the

introduction of the new subclasses to the program is easier [14].

If the decision is realized in the first decision case, one of the subclasses will be

instantiated based on the chosen decision option. The instance of the appropriate

subclass archives the decision and the visible type of the instance will be the

parent class of the subclass. With the help of this the enclosing of the decision

can be realized, because the result of the decision can be used without of the

knowledge of the decision on the next occasions.

In Diagram 1 after sorting decision the purchase object archives the decision

instantiating one of the subclasses (PrivatePurchase, CompanyPurchase) accord-

ing to the first decision case. The instantiation determines the subclass the meth-

ods of which are executed the following method invocations (purchase.setPur-

chaseInfo(), purchase.printBill()). The polymorphism ensures the enclosing of

decisions, because we don’t have to know the subclass—decision option the meth-

ods of which are executed the following method invocations (decision cases before

sorting of decisions), because the instantiation (the first decision case) realizes

the decision enclosing. In the following decision cases the polymorphism means

the different methodologies according to the decision options.

Encapsulation

Encapsulation means that the data structure and the methodology are defined

together enclosing them in units as objects. The encapsulated data structure

and methodology can be defined in the classes, the instances of which are the

objects. Based on the encapsulation the modularized construction can be realized,

with the help of which there will not be any side-effects in other objects—if the

methodology of one of the objects is changed. [9]

i

i

“marien” — 2008/9/1 — 17:42 — page 92 — #10
i

i

i

i

i

i

92 Szabolcs Márien

The decision options can be defined by data structure and methodology. The

decision is defined in a method, if the appropriate If-Else command’s blocks define

the data structure and the methodology of the decision options. If the decision

is sorted defined by the class hierarchy as an abstract form, the decision options

are realized by the subclasses. Using this the changing of the data structure

and the methodology of the decision option has not got any side-effects in other

decision cases and other decision options, so the decision option can define the

data structure and methodology by a subclass which encloses them. As it can

be seen in Diagram 1, the CompanyPurchase class defines the data structures

and methodology of company purchase decision option declaring the nameOfCus-

tomer, addressOfCustomer variables and setPurchaseInfo(), printBill() methods.

Aggregation as dynamic decision embedding

Aggregation is not an Object-Oriented specific concept. If a language sup-

ports record structures, it supports aggregation, too. The class hierarchy defines

“is a” hierarchy, and the aggregation defines “part of” hierarchy. [15]

The sorted decision can be referred by aggregation. If there is a decision case,

where the appropriate decision option is chosen (with the proper data structure

and methodology), and next time the operations are executed based on the chosen

methodology and data structure, the sorted decision can be used on the next

decision cases by aggregation. The result of the decision will be referred by

aggregation.

When we talk about aggregation, we have to know that this is the tool of

relating decisions. If there are two related and sorted decisions (D1, D2), d1

decision has an aggregation and the type of aggregation is the parent class of the

other D2 sorted decision’s class hierarchy, the precondition of D1 decision will be

extended with the precondition of the D2 decision by an logical “AND” operation.

Diagram 3. Sorted decision related by aggregation

i

i

“marien” — 2008/9/1 — 17:42 — page 93 — #11
i

i

i

i

i

i

Decision based examination of object-oriented programming and Design Patterns 93

Multiple Inheritance as static relation of decision options

If the decision predicates of two decisions’ decision options are equivalent, the

decision options can be contracted, so the definitions of the decision options can

be realized together. This is the static relation of decision options. If the decision

options as subclasses of two sorted decisions as class hierarchies are defined by

the same class together, it is called Multiple Inheritance. In this case the decision

predicates of two related decision options of two decisions are equivalent, or the

first decision option’s decision predicate with the second decision option’s negated

predicate are equivalent.

The alternative case of the related decision options is when the decision option

refers to another decision option using aggregation (as types of the Adapter Design

Pattern [1]).

Diagram 4. Relation of decision options by Multiple Inheritance

4. Decision and Sorting decision

Decision

The decision consists of decision options, in which the data structure and

methodology is defined.

In order to simplify the problem, every decision consists of two decision op-

tions so every decision tree is a binary tree. As every tree can be transformed to

a binary tree, this simplification does not restrict the examination. The decision

has a predicate (decision predicate), with the help of which the appropriate deci-

sion option can be chosen. The decision predicate or its negate applies to decision

options, so these are the preconditions of the decision’s decision options.

The decisions are in methods (if-else). The data structure and the method-

ology of the decisions’ decision options can be defined in the methods or in the

class hierarchy (if they are sorted) referred to by an aggregation.

i

i

“marien” — 2008/9/1 — 17:42 — page 94 — #12
i

i

i

i

i

i

94 Szabolcs Márien

By every decision:

• Variables are determined — As mentioned, the decisions consist of decision

options. If one of the decision option’s decision predicate is true, the decision

option will get on. Accordingly, the assigned variables of the decision option

will be realized with the consequence of other following decisions based on

the aggregations in the appropriate decision option. The data structures of

the decision options are those variables the data of which are used as the

data-source or the state of which is modified. If the decision is sorted, the

decision—as class-hierarchy—and the decision options—as subclasses—define

common and decision-option specific variables, which are used (according

to the previously mentioned case) as data-source or the state of which is

modified.

• A methodology is selected — If the decision options are defined in a method,

the methodologies of options consist of a sequence of commands. If the deci-

sion is sorted, the methodology of decision options consists of methods.

The class hierarchies can be interpreted as decision abstractions. If the deci-

sion is sorted, it is defined by a class with its subclasses as a class hierarchy, which

is the abstract form of the decision. If there is a variable, its type is the parent

class in a hierarchy, it can enclose and archive the decision, because it can store

one of the subclasses’ instances enclosed by the parent class type. (It is possible

that a parent class typed variable does not enclose a decision, so the subclasses

of the parent class are not used.)

In the case of sorting decisions to a class hierarchy, the decision will be exe-

cuted with the instantiation of one of the subclasses, so the appropriate decision

option will be selected, the tag objects of which will be initialized as data structure

and the methodology as methods of subclasses can be accessed.

In the Diagram 1 after sorting decision the following code contains the in-

stantiation:

/** Setting the customer’s type. */

System.out.println("Billing for Company? ");

Purchase purchase;

if(sc.nextBoolean()) // Billing for Company?

purchase = new CompanyPurchase(pay);

else

purchase = new PrivatePurchase(pay);

i

i

“marien” — 2008/9/1 — 17:42 — page 95 — #13
i

i

i

i

i

i

Decision based examination of object-oriented programming and Design Patterns 95

If the type of the purchase is company purchase, the data structure of Com-

panyPurchase—nameOfCustomer, addressOfCustomer will be initialized and the

methods of the CompanyPurcase as subclass specific methodology will be acces-

sible.

The decision’s predicate (Diagram 1: sc.nextBoolean(), Diagram 2: deci-

sion 1) will determine the appropriate decision option with the proper methodol-

ogy and data structure by which the variable will be initialized with the type of

the appropriate subclass.

Every decision option’s precondition is that the decision predicate is true or

false in a decision case. If the decision option gets on, that is to say the decision

predicate according to the decision option is true or false, the decision is resolved,

and a new state is realized by the methodology and data structure of the selected

decision option.

The decisions are state-transitions, with the help of which the state-space is

reduced, so the possible number of state-rows decreases (the number of available

states). The end of the running will be just one possible state, because the

programs are deterministic (for the same input we get the same output). The

decision options determine the possible directions of the behavior as state rows.

With every decision, a new state will be achieved by defining the data structure

and methodology of the selected decision option, with the help of which the state-

space is reduced.

If the decisions are built in another decision, the precondition of the re-

lated decisions will be their preconditions connected by logical “AND”: PD1O2
∧

(PD2O1
∨ PD2O2

) The following UML diagram [2] can represent the class

hierarchy, which shows the previously mentioned related decisions.

Two decision predicates PD1
, PD2

are equivalent PD1
≡ PD2

if and only if

they are equal in every evaluated state.

Decision case

The decision instance—where we execute the decision based on the evaluated

decision predicate and initialize the decision option as its data structure and

methodology—is based on its definition. The result of the first decision case can

be used in the course of the following decision cases. The decision cases are those

decision instances, where the decision is executed, archived and the following

decision instances, where the result of the decision is reused.

i

i

“marien” — 2008/9/1 — 17:42 — page 96 — #14
i

i

i

i

i

i

96 Szabolcs Márien

Diagram 5. Object composition—Aggregation—Decision built in an-
other decision—UML diagram

Sorting of decisions

In order to understand the substance of the decision based program designing,

the reasons of sorting the decisions have to be collected.

• The methodology and the data structure of the decision options as a code

should be defined just one time, except when the elimination of the decision

repetition is not possible.

– If there are similar decision option definitions in the methods, those

decision definitions should be contracted by sorting.

– If there are repetitions in the class hierarchy definitions of the decisions,

the similar class hierarchies of decisions should be contracted.

• One decision should be realized just once. Accordingly, the decision repetition

should be eliminated. In this case the decisions’ predicates are equivalent and

the decision options define the same data structure and functionality, which

should be sorted in the same class hierarchy, which can enclose these decisions

eliminating the decision repetition.

• The decisions with equivalent decision predicates consist of different data

structure and functionality. In this case the definitions of these decisions

can be contracted in the same class hierarchy in order that the decisions are

executed together.

– If the decisions with equivalent decision predicates are built in the same

decision’s options, and the functionality and data structure depends on

the container decision, the built in decisions can be contracted, but the

i

i

“marien” — 2008/9/1 — 17:42 — page 97 — #15
i

i

i

i

i

i

Decision based examination of object-oriented programming and Design Patterns 97

contracting definitions have to be differentiated depending on the con-

tainer decision options.

5. New method of Design Pattern classification

In the Introduction the two main groups of Design Patterns were described,

which can be classified as follows:

Design Pattern classification is based on the relations between decisions

In this group the Design Patterns can be realized on the basis of the relations

of the decisions.

The state of the decisions—that is, the decision is sorted into the class hier-

archy or is defined in a method—is not important considering classification. It

means that the detecting of the design patterns has to be based on the decision

relations without known constructions of Design Patterns which are defined in [1].

Accordingly, the decision relations determine one of the Design Patterns in the

non sorted state of decisions. Based on the structure of the determined Design

Pattern the elimination of decision repetition can be realized.

There are Design Patterns in this group, in which the decisions decide between

different data structures, and others, which consist of decisions, which decide

between different functionalities and there are some patterns, which consist of

mixed decisions. The examination of the equivalence of the decision predicates is

important in order to realize the classification.

• The decisions, which have equivalent decision predicates should be contracted.

Even if the decisions concern different data structures or functionality, the

contraction is possible.

∗ State, Bridge, Composite, Interpreter, Iterator, Mediator, Ob-

server, Template Method, Decorator, Chain of Responsibility,

Command, Strategy.

– The decisions—which have equivalent predicates and their decision op-

tions do not define the same data structures and functionality—can not

be contracted, if the decisions define basically different aspects of the

program. These decision options can be defined by the same class us-

ing multiple inheritance or one of the decision options refer to the other

decision option using aggregation.

i

i

“marien” — 2008/9/1 — 17:42 — page 98 — #16
i

i

i

i

i

i

98 Szabolcs Márien

∗ Adapter

• The decisions, which have decision options referring to the same data struc-

ture and functionality, should be contracted. It is not important if the deci-

sion predicates of these decisions are equivalent or not. Naturally, the deci-

sions may concern data structures and functionalities as well,

– if the contracted decisions define the same data structures:

∗ State, Bridge, Composite, Iterator, Mediator, Observer, Template

Method.

– and/or if every contracted decision realizes the options of the same func-

tionalities:

∗ Bridge, Composite, Decorator, Chain of Responsibility, Command,

Iterator, Mediator, Observer, Strategy, Template Method, Inter-

preter.

• The case of the complex decisions, as decision contains decision(s):

– If there are built-in decisions with equivalent decision predicates in the

decision options of the sorted decision, but the definitions—as data struc-

tures and functionality—of these decision options are different and the

built-in decisions’ decision options depend on the container decision op-

tions, the built-in decisions can be contracted into the same class hier-

archy with respect to the container decision option.

Consequently, the Visitor Design Pattern can be used in the case of a

two-level decision hierarchy, where the first level decision options con-

tain second level decisions, the predicates of which are equivalent and

depend on the first level decision. In this case the contracted second

level decisions can be separated depending on the first level decision.

∗ Visitor

– If the decision options of the decision contain other decisions, which

define the same functional and/or data structure options.

∗ Bridge, Template Method

– If the options of the decision contain more decisions. All of these define

the same functional and/or data structure options.

∗ Observer, Mediator

– If the decision contains decisions which define such data structures

and/or functional options as the container decision with the same, but

not equivalent decision predicates.

i

i

“marien” — 2008/9/1 — 17:42 — page 99 — #17
i

i

i

i

i

i

Decision based examination of object-oriented programming and Design Patterns 99

∗ Chain Of Responsibility

– If just one of the decision options (or all of them as Interpreter) contains

an embedded decision which defines such data structures and functional-

ity as the container decision and the decision predicate of the embedded

decision and the container decision are the same, but not equivalent.

∗ Composite, Decorator, Interpreter

– If one of the decision options contains an evaluated decision which defines

such data structures and functionality as the container decision, but this

is a statically evaluated decision.

∗ Proxy

Design Pattern classification based on decision archiving

What are the reasons for using archiving Design Patterns?

• If the result of the decision is used out of scope.

• If the decisions have to be executed every time, because the result of the

previous decisions can not be used again.

In these cases the archiving Design Patterns give us recipes for the solutions.

There are two solutions: According to the first solution, the decision can

be archived by a producer class hierarchy, and later the “product decision” can

be realized based on the archived producer decision. According to the second

solution, the decisions can be archived by a “decision stamp” by the help of

which the decisions can be received from the decision container in the following

decision cases.

As for the first case, the construction type of the product decisions determines

the appropriate Design Pattern. So the functionality, the data structure and the

decision predicate—which are defined by the product decisions—determine the

method of decision archiving and the use of the appropriate Design Pattern.

According to this, the classification can be described as follows:

• If the products are not defined in the same decision’s decision options as the

same class hierarchy, the choice of the appropriate product can be realized

by the archiving decision using the archiving class hierarchy.

– Builder

• If the products can be defined in the same decision’s decision options as the

same class hierarchy, and the sorted decisions (defined in a product class

i

i

“marien” — 2008/9/1 — 17:42 — page 100 — #18
i

i

i

i

i

i

100 Szabolcs Márien

hierarchy) can be created by the archiving decision as an archiving class

hierarchy, which is symmetric to the product class hierarchy.

– Factory Method, Iterator

• If the products can be defined in the same decision as the sorted decisions in

the class hierarchy (like the previously mentioned case), the sorted decisions

can be created by the archiving decision. However, the sorted product deci-

sion class hierarchy gets the producer role, so there is not another producer

class hierarchy.

– Clone

• If the decision predicates of the different sorted decisions—which are defined

by different class hierarchies—are equivalent, the same archiving decision as

an archiving class hierarchy can be used in order to archive these decisions.

In this case, the archiving class hierarchy can archive the equivalent decisions

together, and can create them. (In this case Factory Method Design Patterns

are contracted, accordingly producer decisions will be contracted.)

– Abstract Factory

There is just one option in [1] for reusing the stored decisions in the decision

container.

• If the result of the contracted decisions can be used more times out of scope,

the results of the decisions can be stored in the decision container and the

decisions can be received from the container using the decision stamps.

– Flyweight

6. Example

The example program—which is described in this section—contains decision

repetitions. In this case the decision repetition means that the decisions have

equivalent decision predicates. As previously mentioned, the decisions which have

equivalent decision predicates can be contracted. The decision repetition will be

eliminated by contraction.

In the example, the functionality of the purchase is realized: Paying—By

Cash/By Credit card; type of purchase—As a Private customer/As a Company

customer. The decision predicate of the first decision of the program is evaluated

by purchase.setIsCompany() invocation, which will determine the type of the

i

i

“marien” — 2008/9/1 — 17:42 — page 101 — #19
i

i

i

i

i

i

Decision based examination of object-oriented programming and Design Patterns 101

purchase accordingly the mode of the printing as a voucher or an account with

different data.

The related decision’s decision predicate is evaluated by purchase.setPayBy-

Cash() invocation, based on it the type of the payment will be determined: paying

by cash or by credit card. We can interpret this situation as decision options of

the first decision case contain the cases of other decisions. So the first decision

will determine the type of the purchase as a company or a private purchase,

which determines the printing mode, and the second decision—as a contained

decision—will determine the type of the payment, that is, by cash or by credit

card. The other two decisions in the source have equivalent decision predicates to

the first or the second decisions’ predicates, so the other two decisions are decision

repetitions.

Accordingly there are equivalent decisions in the code, which have to be

eliminated by sorting the decisions into two class hierarchies. If we examine the

decisions and their relations, we realize that, the Bridge Design Pattern can be

detected based on the relations of the decisions. In this case the Bridge Design

Pattern is “hidden” by defining the relating decisions in the methods, but sorting

these decisions into the class hierarchies, the definitions of the relating decisions

will be adopted to the known definition form of the Bridge Design Pattern. So the

“hidden” Bridge Design Pattern will be introduced by sorting the decisions and

defining them into more abstract forms, by which the decision redundancies will

be eliminated and the Bridge Design Pattern will be realized in its better-known

form.

Diagram 6. Class diagram of Bridge Design Pattern [1]

In our interpretation the Bridge Design Pattern shows the method of decision

elimination for the given decision relations.

i

i

“marien” — 2008/9/1 — 17:42 — page 102 — #20
i

i

i

i

i

i

102 Szabolcs Márien

As we can see, the use of a Design Pattern can be noticed based on the

relations of the decisions when it is defined in “hidden” mode in a method.

The example is based on Java syntax [8].

Level 1

As it was mentioned, there are decision repetitions in the source, so there

are decisions with equivalent decision predicates. These decisions can be sorted,

and the data-structure and methodology—which they define—can be contracted.

In the example, the first decision determines the type of printing. The decision

options of the first decision contain the decisions about the type of payment such

as paying by cash or by credit card.

Level 2 — Sorting the “Company or Private Customer?” decision

Two decisions were contracted. The first is defined in the setPurchaseInfo

method, where, based on the type of the purchase (isCompany) the program

determines the parameters, which can be asked from the customer. (nameOf-

Customer, addressOfCustomer or firstName, lastName). The other decision, the

decision predicate of which is equivalent to the previously mentioned decision’s

decision predicate, is defined in the printBill method, where according to the pre-

viously mentioned decision, the type of the purchase (isCompany) determines the

printing data.

The container decisions are sorted into a class hierarchy eliminating the de-

cision repetition.

The type of the customer is determined in the main method, which is archived

by the purchase object.

/** Setting the customer’s type. */

Scanner sc = new Scanner(System.in);

System.out.println("Billing for Company? ");

Purchase purchase;

if(sc.nextBoolean()) // Billing for Company?

purchase = new CompanyPurchase(pay);

else

purchase = new PrivatePurchase(pay);

The decision predicate is an input parameter, which is determined by sc.next-

Boolean(). It is archived by the instantiation of one of the Purchase subclasses

i

i

“marien” — 2008/9/1 — 17:42 — page 103 — #21
i

i

i

i

i

i

Decision based examination of object-oriented programming and Design Patterns 103

Diagram 7. Source with decision repetitions

using purchase object. The archived decision by purchase object is reused two

times:

i

i

“marien” — 2008/9/1 — 17:42 — page 104 — #22
i

i

i

i

i

i

104 Szabolcs Márien

Diagram 8. Sorting the decision cases of container decision type

i

i

“marien” — 2008/9/1 — 17:42 — page 105 — #23
i

i

i

i

i

i

Decision based examination of object-oriented programming and Design Patterns 105

purchase.setPurchaseInfo();

purchase.printBill();}

In the setPurchaseInfo method, according to the type of the customer the

private or company data are set. In the printBill method according to the type

of the customer the private or company data are printed.

The CompanyPurchase class—as the subclass of the Purchase class—is avail-

able, if the type of the customer is a company as it is decided in the Main method.

It is necessary to receive and print the name and address of the company The

PrivatePurchase class—as the subclass of the Purchase class—is available, if the

type of the customer is not a company as it is decided in the Main method. It is

necessary to get and print the firstName and lastName of the customer.

Level 3 — Sorting the “Paying by cash or credit card” decision

At this Level the known form of the Bridge Design Pattern will be realized

by sorting the decisions about the payment type. The decisions of the payment

type are sorted into the class hierarchy, in which the different paying modes are

defined in the subclasses as the decision options. If somebody pays by cash, the

number of the credit card and the transaction number are not necessary, but the

paid and received amounts are required. In the case of paying by credit card

the received and paid amounts are not necessary, but the credit card number

and the transaction number are required. After the contraction of the equivalent

decisions of the paying mode was executed (which were in the setPayInfo and

the printPayInfo methods as it was defined in Level 2), the decision about the

paying mode will be executed just once, which will be enclosed and archived by

the “Pay” class hierarchy and the enclosed decision will be reused on the next

occasions.

The payment type is determined in the main method, which is archived by

the pay object.

/** Setting the type of paying. */

System.out.println("Pay By Cash?");

Pay pay;

if(sc.nextBoolean()) // Pay By Cash?

pay = new PayByCash();

else

pay = new PayByCreditcard();

i

i

“marien” — 2008/9/1 — 17:42 — page 106 — #24
i

i

i

i

i

i

106 Szabolcs Márien

Diagram 9. Sorting the decision cases of second decision type

i

i

“marien” — 2008/9/1 — 17:42 — page 107 — #25
i

i

i

i

i

i

Decision based examination of object-oriented programming and Design Patterns 107

The decision predicate is an input parameter, which is determined by sc.next-

Boolean(). It is archived by the instantiation of one of the Pay subclasses using

pay object. The archived decision by pay object is reused two times:

pay.setPayInfo();

pay.printPayInfo();

In the setPayInfo method according to the payment type the data of paying

by cash or by credit card are set. In the printPayInfo method (invocated in the

printBill method) according to payment type the data of paying by cash or by

credit card are printed.

The decisions of the payment mode with different methodologies will be de-

fined in the Pay class hierarchy. The two decision options differ in receiving and

printing data about paying.

The PayByCash class, the subclass of the Pay class is available, if the cus-

tomer pays by cash as it is decided in the Main method.

The PayByCreditCard class, as the subclass of the Pay class is available, if

the customer pays by credit card as it is decided in the Main method.

7. Conclusion

The new interpretation of the object-oriented paradigms was described, which

makes the object-oriented designing and programming easier.

As it was described, there are connections between the decision based in-

terpretation of the object-oriented paradigms and Design Patterns, so Design

Patterns give us recipes to eliminate the decision redundancy and archive the

decisions. The applicability of the conception was presented through an example,

in which the decision redundancies were eliminated by the introduction of the

Bridge Design Pattern.

In the next papers we are going to examine the relationship between the

application of Design Patterns and the decline of the decision repetition and be-

tween the program quality and (the number of) decision repetition. Based on the

described interpretation of Design Patterns, their aims are realized clearly, which

will help their better understanding. We will also determine the formalization of

Design Patterns according to the decision-based conception based on the JML [6].

Using the formalization method we will realize the description of Design Patterns

more exactly and the influence of the decision-based conception on the quality of

the programs can be analyzed.

i

i

“marien” — 2008/9/1 — 17:42 — page 108 — #26
i

i

i

i

i

i

108 Szabolcs Márien

According to our plan, we will examine whether the decision repetition in the

design and in the source can be eliminated by sorting them automatically, by the

help of which the upgrading of the quality of the design and the source can be

realized automatically, too.

Using the new decision-based conception a new, more natural classification of

Design Patterns was described, by which we would like to launch the discussion

about establishing the existing classification [1]. In order to examine the cor-

rectness of the briefly described classification we are planning to publish further

articles and compare it with the existing classification.

References

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Professional Computing Series,
1995.

[2] J. Rambaugh, I. Jacobson, G. Booch, The unified modeling language reference man-
ual, Addision-Wesley, 1998.

[3] T. Taibi, D. Chek Ling Ngo, Formal Specification of Design Patterns—A Balanced
Approach, Journal of Object Technology, Multimedia University, Malaysia (2003).

[4] A. H. Eden, J. Gil, Y. Hirshfel, A. Yehudai, Towards a Mathematical Foundation
For Design Patterns, Computer Science Department and Department of pure math-
ematics, Tel-Aviv Univerity, IBM Research and Technion.

[5] T. Mikkonen, Formalizing Design Patterns, ICSE’98—IEEE Computer Society
Press, 1998.

[6] L. Lamport, The temporal logic of Actions, 1994.

[7] G. Kusper, Programtervezési minták értelmezése normálformaként, Networkshop
konferenciakiadvány, Miskolc, Hungary (2006).

[8] JavaTM 2 Platform Standard Edition 5.0,
http://java.sun.com/j2se/1.5.0/docs/api,

http://java.sun.com/docs/books/jls/second edition/html/syntax.doc.html.

[9] K. Fisher, J. C. Mitchell, Notes on typed object-oriented programming, Computer
Science Dept., Stanford University, Stanford, 1994.

[10] H. Albin-Amiot, Y. Guéhéneuc, Meta-Modeling Design Patterns: Application to
Pattern Detection and Code Analysis, Workshop on Adaptative Object-Models and
Metamodeling Techniques, ECOOP (European Conference on Oriented Program-
ming) (2001).

[11] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Object-Oriented
Modeling and Design, Prentice-Hall International Editions, New Jersey, 1991.

[12] M. Piefel, Object Oriented Software Development—Coursework ‘Information Engi-
neering’, Department of Computing, University of Bradford, 1996/97.

i

i

“marien” — 2008/9/1 — 17:42 — page 109 — #27
i

i

i

i

i

i

Decision based examination of object-oriented programming and Design Patterns 109

[13] Software Quality Metrics for Object Oriented System Environments, Software As-
surance Technology Center as SATC, 1995.

[14] O. Nierstrasz, Survey of Object-Oriented Concepts, University of Geneva.

[15] G. Booch, Object Oriented Analysis and Design with Applications, Adison-Wesly,
1994.

SZABOLCS MÁRIEN

H–3433, NYÉKLÁDHÁZA

JÓZSEF ATTILA ÚT 2

and

UNIVERSITY OF DEBRECEN

H–4032, DEBRECEN

HUNGARY

E-mail: mariensz@hotmail.com

(Received August, 2007)

