“marien” — 2008/9/1 — 17:42 — page 83 — #1

6/1 (2008), 83-109 Teqching

tmcs@inf.unideb.hu MafhemdfiC§ and
http://tmes.math.kite.hu Computer Science

Decision based examination of
object-oriented programming and
Design Patterns

SZABOLCS MARIEN

Abstract. On the basis of our examination experience of Design Patterns the existing
interpretations and descriptions of Design Patterns do not realise a clear and under-
standable answer for their aims. The reason for this is that the existing interpretation
of the object-oriented paradigms is used for their description and formulation. In order
that clear answers could be found for the aims of using Design Patterns, a new concep-
tion of their interpretation has to be established. In order to create a new conception,
we have to analyze object-oriented paradigms.

According to our new conception the object-oriented methodology is based on the
elimination of decision repetition, thus sorting the decisions to class hierarchy, with the
help of which the data structure and methodology of decision options can be determined
by the subclasses of the given class. Sorting the decisions and decision options to a class
and its subclasses only the first decision case will be executed, which will be archived
and enclosed by instantiation of one of the subclasses. For the following decision cases
the archived decision result can be used without knowledge of which decision option was
used, so to say which subclass was instantiated, because it is enclosed by using the type
of the parent class.

The aim of the object-oriented technology is the elimination of decision repetition,
which can be realized by sorting the decisions. The derivations are the abstract defini-
tions of decisions, so the derivations can be interpreted as decision abstractions. The
Design Patterns offer recipes for sorting the decisions. With the help of the decision
concept the aim of Design Patterns can be cleared and a more natural classification of
Design Patterns can be realized.

Key words and phrases: object-oriented paradigms, inheritance, Design Patterns.

ZDM Subject Classification: P50.

Copyright (© 2008 by University of Debrecen

“marien” — 2008/9/1 — 17:42 — page 84 — #2

84 Szabolcs Méarien

1. Motivation

The reduction of design failures can be achieved by experience in design.

The Design Patterns are realized as a result of collecting the design experi-
ence. The Design Patterns give recipes for the designers how the designing cases
can be solved appropriately and realize the professionally accepted answers for
the similar designing cases.

The professionally accepted Design Patterns are specified in [1].

In order to be able to use the experience gained from the Design Patterns, we
have to understand the Design Patterns. The formalizations of Design Patterns—
which try to represent their different aspects—aim at supporting their under-
standing. The formalizations are based on different description solutions with
graphical presentation concepts (LePus [4], PDL [10]).

In [1] the description of Design Patterns is based on natural language, ex-
amples and OMT diagrams [11]. The description of Design Patterns by natural
language and examples is not accurate [4, 5], so the essence of Design Patterns
is often missing from their descriptions. Therefore the profession has published
numerous solutions for a more accurate and formalized description of Design Pat-
terns. (LePUS [4], DisCo [5], BPSL [3]). But the new formalizations do not
engage in the interpretation of Design Patterns, so the existing interpretation is
untouched, therefore the aims of Design Patterns remain unclarified.

What is the reason for the lack of answers to the aims of Design Patterns? The
answer can be that the object-oriented paradigms, based on their present interpre-
tations, obstruct the extended examination of the object-oriented methodology.
According to the present interpretation of the object-oriented paradigms there
are no clear answers to the aims of Design Patterns. Thus the present interpre-
tations of object-oriented paradigms (Inheritance [9, 12, 13, 15], Polymorphism
[9, 12, 15], Encapsulation [9, 12, 15], Message-passing [9, 12, 13, 15]) and the
present interpretation of Design Patterns [1] must be reconsidered.

In [7] a new concept is invented for the interpretation of Design Patterns,
which states that the aim of Design Patterns is the elimination of the repetition
of the code and data redundancy. This new concept is proper as it tries to re-
interpret Design Patterns. However, it does not abstract from the object-oriented
paradigms, therefore the given answers are not holistic.

In this paper a new interpretation of the object-oriented paradigms is de-
scribed which can help us comprehend the aims of Design Patterns. According

“marien” — 2008/9/1 — 17:42 — page 85 — #3

Decision based examination of object-oriented programming and Design Patterns 85

to this concept a new classification of Design Patterns has been realized, which
is more natural than the existing ones.

2. Introduction

In this paper a new idea is shown, with the help of which the aims of Design
Patterns can be clarified. Accordingly the object-oriented paradigms will get new
interpretations.

What do the decisions of the program code decide? The decisions decide
the appropriate methodology and the data structures, so the data structures and
the functionalities are specified in the decision options of the decisions. The
decision options are the optional facilities of the decision. The decision option
consists of a data structure and methodology and a decision predicate by which
the appropriate decision option is determined in the decision cases. The main
concept of the object-oriented methodology is the elimination of the decisions’
repetition by sorting them to a “common place”. This “common place” is a
class with its subclasses, so the decision repetition can be eliminated by the class
hierarchy, which is a more abstract definition of the decisions.

After sorting the decisions, the decision is executed only once about the
necessary functionality and data structure. Based on the instantiation of the
subclass with the appropriate functionality and/or data structure the archiving
of the decision is realized. The result of the decision (the archived decision) as
an instance of the appropriate subclass can be used at the other decision places
(henceforth: decision cases) without knowing anything else about it. Accordingly
the decisions can be enclosed in class hierarchy.

The example shows that two decisions’ decision options are organised in the
same class hierarchy by sorting decision—Purchase. (The contraction conditions
of two decisions’ decision options are described below.) Using the Purchase class
hierarchy the decision can be used more times inclosing it into the purchase object
with the parent class type of the class hierarchy. First, the decision is used
for setting the decision specific data (purchase.setPurchaseInfo()) and then, for
printing them (purchase.printBill()). If decision option specific data structure or
methodology is required after archiving decision, type-casting has to be used for
achieving the subclass (according to the decision option) specific data structures
and methods.

The decision cases are important parts of the programs where the appropriate
decision option can be decided using the actual values in the decision predicates.

“marien” — 2008/9/1 — 17:42 — page 86 — #4

86 Szabolcs Méarien

Purchane .
urchare e Absback =
Bt amber Inf= -1 Purchaze

Sscompany :Bodlean - Talm
Sname 0T uskmer 1SNy = "
Saddre 330 ICuskomer :SHng = ™"

Tapay : Pay

SprintBlI -
SpayByCash :Boolean = Inue i .

il I -
Srequired Amoun | inl = O D= Wb |

Spald Amounl i Inl = 0
Sorecived Am ounl:in = 0

S iransaclion Number tinl= O ||
Scani Mumber (Inl= 0

SNrsiame (S = ™ |
asnane (SHng - = |

P Lrchiase O |
SBec b sirack = o Purchase nkd

CompanyFuchase
Fananm e 0 Cuziom e 2iing = 7"
| Sre | Purchase i Taddre 0 TCuslomer (SHng = 7

Frivale Funchase
FafirsiName D 2iing = 7" |
T ailame D 2iing = 7T

e | Pay By C A

o B om pany Purchase pay : Fay |
e IPay Nt "Fersonal Furchase (pay : Pay) |

public slalcuald maln(Shing[] agn { [| |

| | publlc slale vold maineEiing 0 am s
Zyrkm oulprinindc LI For Com pany™ ™y
Furchare punchase ;

limnex|Boole anOW//BIIING for Company?
PUFCIE = MEW G o pany PUrchare ipay
el |
purchase= new PrivaleFurcham payy;

TCANNET S0 = MEW SCAMNE NSV M 1Ny | |

Syrkem oul prininBHIIng orompany™ ™,
| I ompanys=m.re s lB oo can
purchase e lP urchase In

| | Zmarner o= new Scanne i Zyskm.dng

purchas . IFurchase
purchase prinlBINIG;

| | purchaze prinlBinG;

¥

profeckd vold relPucham nfd] [
Scarner oow new Scanne niSyskem dnd;
Syskem oulprinired"Hame O TCus omer:
PR & O TS SR & T e S Ure]
STk m oA Lprn e A dre s QTG uskmern 7y,
aldre g0 Cuslomer = sonexilined,;

|| I Zellrg lhedak of he cuskomerbased on he I
Lcurbmer Iype 5

prvale vold = IFwchase nfdd
| THAMMET PO = MW STANNE DR W N
1135 om pany«
Syskem oulprininHame o7 Cuslomer:
name O ompany = scnexilined;
Sy m auLprin e Addne 550 70 uskmern:
addre B0 TEompany = s lUne oy
el
Zyskem oulprinired"Flesl name: ™y
TrilMame = sonex|Ure
Syskm aulprinlre” Las)
lasiMame = scnexllre o

r———— — — —

3

prokcked vold s IFuchase Inmod |
Scannerics new Scamne Sk m ing

Syskem o Lprinnd"FIrsl name: "

MrsiMame = senesllned; |
ZYER Mmoo Lprin T LAl name: T

ame: T

lasiMame = senexllined; |

3

public vold priniBIIGE [} |
Syslem oulprinlin®Hame : "+ nam ed TCuslomen; |

Syslem oulprinlin® Addre 532 "+ addres L uslomen;

——————

| I PAnling he dala oThe cuslomer ard ke paying 7
—

privak vold prindgl o] AP ErpriniBmG;
1¥1355 om pany{ T
Zyskem oulprinired"Hame "+ rame O TCompany;
Syskern oulprinind"Add e s "+ addresd £ ompanyi publicuold prniBIIGL [

Zyskem oulprintre”Hrslrame "+ 1zllame:;

el = . . .
Ty m U LErIn AT FIEEIam & @7+ 1rinam s ”T'km:l'll;:lzln_'“ Lasiname : *+ laziMam ;
Sy m ouLprin BrT Lasiram e @7 lasinam e mperpin 3
Syslem oulpinin®Faylnto: "+ pidnlFay nio ¥
T prokclkd uold pinlBIIGE I
Syskem oulprinind®Faylnio ™+ pay pinlFay o
¥

Diagram 1. Sorting decision into class hierarchy

In order that a program would be good structured, we should note the fol-
lowing:

“marien” — 2008/9/1 — 17:42 — page 87 — #5

Decision based examination of object-oriented programming and Design Patterns 87

e The methodology and/or the data structure of the decision options have to
be defined just once, so the code of the decision options will be defined just
once, except when the sorting of the decisions is impossible. It is important
to consider handling, because the introduction of the new decision option can
only be solved easily, if it is built in at just one place in the program.

¢ The decisions should not reoccur, so a decision—during the same running—
can be executed just once. The elimination of the decision repetition has two
aspects:

— The result of the decision—as the data structures or/and methodology
of the decision options—can be used several times.

— The result of the decision can be used several times afterwards, but
every time a new instance of the structures or/and the methodology of
the decision options is created. The archived decision can be used later
for creating an instance of the decision options.

e The decision predicates of decisions are equivalent, but altering in their de-
cision options’ definitions should not reoccur. (The decisions predicates are
equivalent if the evaluation of predicates is equal in every state.) This differs
from the previous case, because although the decision predicates are equiva-
lent, the methodology and/or the data structures of the decision options are
different. In these cases the decisions can be contracted too, so the definitions
of the different decision options can be defined by contracting them in the
same class hierarchy according to the decision predicates.

The Design Patterns give us recipes for accomplishing the above listed require-
ments of the good structured programs in order to reduce the decision repetitions.

The Design Patterns show us how the decisions can be archived and/or re-
lated.

According to the previously determined two main concepts of Design Pat-
terns, there are two groups of them:

e Decision archiving Design Patterns: If the data structure and/or the method-
ology of decision options of a the realized decision is used more times, the
inheritance/derivation as the main concept of the object-oriented technology
can assure using the result of the decision more times by enclosing the de-
cision to the class hierarchy (to the class and its subclasses). The enclosed
decision by derivation can be used more times by aggregation in a certain
scope. If new instances of the appropriate data structure and/or method-
ology have to be created according to the decision for every decision cases,

“marien” — 2008/9/1 — 17:42 — page 88 — #6

88 Szabolcs Méarien

the archiving Design Patterns are used. The types of the products’ structure
determine which type of archiving Design Pattern can be applied. It means
that the associations between the data structures and/or the methodology of
the decision options determine the type of the usable Design Pattern.

e Design Patterns, which determine the relations of decisions: The structures
of the related decisions and the relations of them determine which Design
Pattern can be used. Therefore the second group of Design Patterns can be
realized based on the relations of Design Patterns.

The two main groups of Design Patterns can be classified separately.

In the next part of our paper the new interpretations of object-oriented
paradigms will be described based on new conception (Section 3). In Section
4 the basis of decision based theory can be seen. Based on this concept, a new
classification of Design Patterns can be realized (Section 5). In the final part
of the paper, in Section 6, an example shows how decision redundancy can be
eliminated by applying Design Patterns.

3. New interpretation of the object-oriented paradigms

“The object-oriented programming is a programming methodology. Programs
—which based on it—organize the collaboration of objects, which are instances
one of the classes. The classes are parts of hierarchies, which are built by inheri-
tance connections.” [15]

The most important object-oriented paradigm is inheritance. Inheritance can
improve the design logically and free it from code redundancy. [7]

In order that the analysis can be realized based on the decisions, it is im-
portant, how the basic paradigms of the object-oriented technology (inheritance
[9, 12, 13, 15], polymorphism [9, 12, 15], encapsulation [9, 12, 15]) and its basic
tools (class hierarchy, aggregation) can be joined to the decision based concept.

Inheritance as Decision Abstraction

The inheritance means that the data structure and the methodology—which
are defined in a class—can be inherited by its subclasses. The subclasses can de-
fine new data structures and methods as complements of the inherited properties
[13, 14] and can overwrite the inherited data structure and methodologies.

“marien” — 2008/9/1 — 17:42 — page 89 — #7

Decision based examination of object-oriented programming and Design Patterns 89

The decision can choose the running program code and the data structure.
In order that a decision can be archived, it has to be sorted, which means that
the data structure and methodology of decision options have to be defined in a
class hierarchy, as a parent class and its subclasses. The derivation/inheritance
ensures the enclosing and archiving of decision to the class hierarchy with the
help of which the definitions of the decisions can be contracted and the decision
repetitions can be eliminated.

According to this interpretation the inheritance—the class with its subclasses
—is the abstract form of the decision.

If the decision is defined in a class hierarchy, the following is realized:

¢ Elimination of the code repetition, which defines the decision options, so the
conditions of the decision options can be defined just once.

eckclion_f Sorted Decidon

i
SEemantprith Deckibacpdon 7))
ele
Zeemoriprivted Dec ko opttn I3

iiwcsm_u{ ==l Tack--
SyFemontprvi eckionopdon Ty Decisani
eke (an Sored Deck i

SyFemoriprivt Deckion opton Iy,

Mg dractsr print)

Sorting decision ,#

01 Optiand 01 Optionz
Sorkedd Deck by Sored Deck by
Decklonidi; _ L _ L
HickcE o1y —
i W DIt
e ke \'\
i W Dot proeced vkl privy P ck duaklprg
Syremontprtin” Decklngpttn Th; zemortpriete§ Deck bn ot 25
diprity; ¥ ki
dipriet];

Diagram 2. Elimination of code repetition by decision sortingy

In Diagram 2 the definitions of decision options of decision_1 are duplicated,
which is eliminated by sorting them into a class hierarchy.

o Archiving the decision, with the help of which the result of the decision can be
used later on. Unless the required data structure or methodology is specified
by just one of the decision options.

In Diagram 1 the purchase object is created the type of which is Purchase
parent class, and it archives the decision about the purchase type (company
or private purchase). The archived decision about purchase is applied twice.

“marien” — 2008/9/1 — 17:42 — page 90 — #8

90 Szabolcs Méarien

(purchase.setPurchaselnfo(), purchase.printBill()). The purchase object is
the instance of one of the subclasses of the Purchase parent class (Com-
panyPurchase, PrivatePurchase), by which the decision is archived and the
decision option specific data structure and methodology are accessible.

e Enclosing the decision. The result of the decision is not known in the next

decision cases. Except when the required data structure or methodology is
specified by just one of the decision options.
In Diagram 1 according to the decision about purchase type one of the sub-
classes (PrivatePurchase, CompanyPurchase) is instantiated (purchase ob-
ject) enclosing the decision. The type of the purchase object is the Pur-
chase parent class. In the following decision cases the decision is enclosed,
so there is not knowledge about the current decision option (about the type
of the instantiation). The type (one of the subclasses) of the instantiation
realizes the current decision option determining the current methods and
data structures of one of the subclasses, which are actually run by the pur-
chase.setPurchaselInfo(), purchase.printBill() method invocations, as it can
be seen in the following example code:

/** Setting the customer’s type. */
System.out.println("Billing for Company? ");
Purchase purchase;
if (sc.nextBoolean()) // Billing for Company?
purchase = new CompanyPurchase(pay);
else
purchase = new PrivatePurchase(pay);

¢ By the introduction of the new subclass, the decision options can be extended
easily. By creating a new subclass, just the first decision case has to be fit
for handling the new decision option, because the decision will be enclosed
on the next occasions. Unless the required data structure or methodology is
specified by just one of the decision options.

As can be seen, if the data structure or/and methodology is specified by just
one of the decision options, the advantages of the decision sorting can be realized
partly. The forceful usage of the polymorphism can realize the advantages of the
decision sorting as inheritance completely.

“marien” — 2008/9/1 — 17:42 — page 91 — #9

Decision based examination of object-oriented programming and Design Patterns 91

Polymorphism as Decision enclosing

Polymorphism means that the classes’ methods can be overwritten by their
subclasses, so the method—which gets the control—is selected just in runtime
(Late Binding) [12]. Late Binding—using another terminology—means that an
object sends similar messages to different objects (an instance of a class or its
subclasses) and a different code will be executed [9]. The message-passing (using
Smalltalk interpretation it is message-passing, but based on C++ terminology
it is method calling [9]) means that one object gets another object to execute a
method [13]. Late Binding depends on the programming-language or it is optional
(C++4), because the resource effort is too large, but the maintenance of the code
will be reduced [14]. The polymorphism can increase the reusability, because the
introduction of the new subclasses to the program is easier [14].

If the decision is realized in the first decision case, one of the subclasses will be
instantiated based on the chosen decision option. The instance of the appropriate
subclass archives the decision and the visible type of the instance will be the
parent class of the subclass. With the help of this the enclosing of the decision
can be realized, because the result of the decision can be used without of the
knowledge of the decision on the next occasions.

In Diagram 1 after sorting decision the purchase object archives the decision
instantiating one of the subclasses (PrivatePurchase, CompanyPurchase) accord-
ing to the first decision case. The instantiation determines the subclass the meth-
ods of which are executed the following method invocations (purchase.setPur-
chaseInfo(), purchase.printBill()). The polymorphism ensures the enclosing of
decisions, because we don’t have to know the subclass—decision option the meth-
ods of which are executed the following method invocations (decision cases before
sorting of decisions), because the instantiation (the first decision case) realizes
the decision enclosing. In the following decision cases the polymorphism means
the different methodologies according to the decision options.

Encapsulation

Encapsulation means that the data structure and the methodology are defined
together enclosing them in units as objects. The encapsulated data structure
and methodology can be defined in the classes, the instances of which are the
objects. Based on the encapsulation the modularized construction can be realized,
with the help of which there will not be any side-effects in other objects—if the
methodology of one of the objects is changed. [9]

“marien” — 2008/9/1 — 17:42 — page 92 — #10

92 Szabolcs Méarien

The decision options can be defined by data structure and methodology. The
decision is defined in a method, if the appropriate If-Else command’s blocks define
the data structure and the methodology of the decision options. If the decision
is sorted defined by the class hierarchy as an abstract form, the decision options
are realized by the subclasses. Using this the changing of the data structure
and the methodology of the decision option has not got any side-effects in other
decision cases and other decision options, so the decision option can define the
data structure and methodology by a subclass which encloses them. As it can
be seen in Diagram 1, the CompanyPurchase class defines the data structures
and methodology of company purchase decision option declaring the nameOfCus-
tomer, addressOfCustomer variables and setPurchaselnfo(), printBill() methods.

Aggregation as dynamic decision embedding

Aggregation is not an Object-Oriented specific concept. If a language sup-
ports record structures, it supports aggregation, too. The class hierarchy defines
“is a” hierarchy, and the aggregation defines “part of” hierarchy. [15]

The sorted decision can be referred by aggregation. If there is a decision case,
where the appropriate decision option is chosen (with the proper data structure
and methodology), and next time the operations are executed based on the chosen
methodology and data structure, the sorted decision can be used on the next
decision cases by aggregation. The result of the decision will be referred by
aggregation.

When we talk about aggregation, we have to know that this is the tool of
relating decisions. If there are two related and sorted decisions (D1, D2), d1
decision has an aggregation and the type of aggregation is the parent class of the
other D2 sorted decision’s class hierarchy, the precondition of D1 decision will be
extended with the precondition of the D2 decision by an logical “AND” operation.

D1 oz D2

0101 D102 D201 D202

Diagram 3. Sorted decision related by aggregation

“marien” — 2008/9/1 — 17:42 — page 93 — #11

Decision based examination of object-oriented programming and Design Patterns 93

Multiple Inheritance as static relation of decision options

If the decision predicates of two decisions’ decision options are equivalent, the
decision options can be contracted, so the definitions of the decision options can
be realized together. This is the static relation of decision options. If the decision
options as subclasses of two sorted decisions as class hierarchies are defined by
the same class together, it is called Multiple Inheritance. In this case the decision
predicates of two related decision options of two decisions are equivalent, or the
first decision option’s decision predicate with the second decision option’s negated
predicate are equivalent.

The alternative case of the related decision options is when the decision option
refers to another decision option using aggregation (as types of the Adapter Design
Pattern [1]).

O1o2 O D22

Diagram 4. Relation of decision options by Multiple Inheritance

4. Decision and Sorting decision

Decision

The decision consists of decision options, in which the data structure and
methodology is defined.

In order to simplify the problem, every decision consists of two decision op-
tions so every decision tree is a binary tree. As every tree can be transformed to
a binary tree, this simplification does not restrict the examination. The decision
has a predicate (decision predicate), with the help of which the appropriate deci-
sion option can be chosen. The decision predicate or its negate applies to decision
options, so these are the preconditions of the decision’s decision options.

The decisions are in methods (if-else). The data structure and the method-
ology of the decisions’ decision options can be defined in the methods or in the
class hierarchy (if they are sorted) referred to by an aggregation.

“marien” — 2008/9/1 — 17:42 — page 94 — #12

94 Szabolcs Méarien

By every decision:

e Variables are determined — As mentioned, the decisions consist of decision
options. If one of the decision option’s decision predicate is true, the decision
option will get on. Accordingly, the assigned variables of the decision option
will be realized with the consequence of other following decisions based on
the aggregations in the appropriate decision option. The data structures of
the decision options are those variables the data of which are used as the
data-source or the state of which is modified. If the decision is sorted, the
decision—as class-hierarchy—and the decision options—as subclasses—define
common and decision-option specific variables, which are used (according
to the previously mentioned case) as data-source or the state of which is
modified.

¢ A methodology is selected — If the decision options are defined in a method,
the methodologies of options consist of a sequence of commands. If the deci-
sion is sorted, the methodology of decision options consists of methods.

The class hierarchies can be interpreted as decision abstractions. If the deci-
sion is sorted, it is defined by a class with its subclasses as a class hierarchy, which
is the abstract form of the decision. If there is a variable, its type is the parent
class in a hierarchy, it can enclose and archive the decision, because it can store
one of the subclasses’ instances enclosed by the parent class type. (It is possible
that a parent class typed variable does not enclose a decision, so the subclasses
of the parent class are not used.)

In the case of sorting decisions to a class hierarchy, the decision will be exe-
cuted with the instantiation of one of the subclasses, so the appropriate decision
option will be selected, the tag objects of which will be initialized as data structure
and the methodology as methods of subclasses can be accessed.

In the Diagram 1 after sorting decision the following code contains the in-
stantiation:

/** Setting the customer’s type. */
System.out.println("Billing for Company? ");
Purchase purchase;
if (sc.nextBoolean()) // Billing for Company?
purchase = new CompanyPurchase(pay);
else
purchase = new PrivatePurchase(pay);

“marien” — 2008/9/1 — 17:42 — page 95 — #13

Decision based examination of object-oriented programming and Design Patterns 95

If the type of the purchase is company purchase, the data structure of Com-
panyPurchase—nameOfCustomer, addressOfCustomer will be initialized and the
methods of the CompanyPurcase as subclass specific methodology will be acces-
sible.

The decision’s predicate (Diagram 1: sc.nextBoolean(), Diagram 2: deci-
sion_1) will determine the appropriate decision option with the proper methodol-
ogy and data structure by which the variable will be initialized with the type of
the appropriate subclass.

Every decision option’s precondition is that the decision predicate is true or
false in a decision case. If the decision option gets on, that is to say the decision
predicate according to the decision option is true or false, the decision is resolved,
and a new state is realized by the methodology and data structure of the selected
decision option.

The decisions are state-transitions, with the help of which the state-space is
reduced, so the possible number of state-rows decreases (the number of available
states). The end of the running will be just one possible state, because the
programs are deterministic (for the same input we get the same output). The
decision options determine the possible directions of the behavior as state rows.
With every decision, a new state will be achieved by defining the data structure
and methodology of the selected decision option, with the help of which the state-
space is reduced.

If the decisions are built in another decision, the precondition of the re-
lated decisions will be their preconditions connected by logical “AND”: Pp, o, A
(Pp,o, V Pp,o,).... The following UML diagram [2] can represent the class
hierarchy, which shows the previously mentioned related decisions.

Two decision predicates Pp,, Pp, are equivalent Pp, = Pp, if and only if
they are equal in every evaluated state.

Decision case

The decision instance—where we execute the decision based on the evaluated
decision predicate and initialize the decision option as its data structure and
methodology—is based on its definition. The result of the first decision case can
be used in the course of the following decision cases. The decision cases are those
decision instances, where the decision is executed, archived and the following
decision instances, where the result of the decision is reused.

96

“marien” — 2008/9/1 — 17:42 — page 96 — #14

Szabolcs Méarien

L1

T

L1 102 L2

%;

D201 D202

Diagram 5. Object composition—Aggregation—Decision built in an-
other decision—UML diagram

Sorting of decisions

In order to understand the substance of the decision based program designing,

the reasons of sorting the decisions have to be collected.

The methodology and the data structure of the decision options as a code
should be defined just one time, except when the elimination of the decision
repetition is not possible.

— If there are similar decision option definitions in the methods, those
decision definitions should be contracted by sorting.

— If there are repetitions in the class hierarchy definitions of the decisions,
the similar class hierarchies of decisions should be contracted.

One decision should be realized just once. Accordingly, the decision repetition
should be eliminated. In this case the decisions’ predicates are equivalent and
the decision options define the same data structure and functionality, which
should be sorted in the same class hierarchy, which can enclose these decisions
eliminating the decision repetition.

The decisions with equivalent decision predicates consist of different data
structure and functionality. In this case the definitions of these decisions
can be contracted in the same class hierarchy in order that the decisions are
executed together.

— If the decisions with equivalent decision predicates are built in the same
decision’s options, and the functionality and data structure depends on
the container decision, the built in decisions can be contracted, but the

“marien” — 2008/9/1 — 17:42 — page 97 — #15

Decision based examination of object-oriented programming and Design Patterns 97

contracting definitions have to be differentiated depending on the con-
tainer decision options.

5. New method of Design Pattern classification

In the Introduction the two main groups of Design Patterns were described,
which can be classified as follows:

Design Pattern classification is based on the relations between decisions

In this group the Design Patterns can be realized on the basis of the relations
of the decisions.

The state of the decisions—that is, the decision is sorted into the class hier-
archy or is defined in a method—is not important considering classification. It
means that the detecting of the design patterns has to be based on the decision
relations without known constructions of Design Patterns which are defined in [1].
Accordingly, the decision relations determine one of the Design Patterns in the
non sorted state of decisions. Based on the structure of the determined Design
Pattern the elimination of decision repetition can be realized.

There are Design Patterns in this group, in which the decisions decide between
different data structures, and others, which consist of decisions, which decide
between different functionalities and there are some patterns, which consist of
mixed decisions. The examination of the equivalence of the decision predicates is
important in order to realize the classification.

¢ The decisions, which have equivalent decision predicates should be contracted.
Even if the decisions concern different data structures or functionality, the
contraction is possible.

* State, Bridge, Composite, Interpreter, Iterator, Mediator, Ob-
server, Template Method, Decorator, Chain of Responsibility,
Command, Strategy.

— The decisions—which have equivalent predicates and their decision op-
tions do not define the same data structures and functionality—can not
be contracted, if the decisions define basically different aspects of the
program. These decision options can be defined by the same class us-
ing multiple inheritance or one of the decision options refer to the other
decision option using aggregation.

98

“marien” — 2008/9/1 — 17:42 — page 98 — #16

Szabolcs Méarien

x Adapter

o The decisions, which have decision options referring to the same data struc-
ture and functionality, should be contracted. It is not important if the deci-
sion predicates of these decisions are equivalent or not. Naturally, the deci-

sions may concern data structures and functionalities as well,

if the contracted decisions define the same data structures:

x State, Bridge, Composite, Iterator, Mediator, Observer, Template
Method.

and/or if every contracted decision realizes the options of the same func-
tionalities:

x Bridge, Composite, Decorator, Chain of Responsibility, Command,
Iterator, Mediator, Observer, Strategy, Template Method, Inter-
preter.

o The case of the complex decisions, as decision contains decision(s):

If there are built-in decisions with equivalent decision predicates in the
decision options of the sorted decision, but the definitions—as data struc-
tures and functionality—of these decision options are different and the
built-in decisions’ decision options depend on the container decision op-
tions, the built-in decisions can be contracted into the same class hier-
archy with respect to the container decision option.

Consequently, the Visitor Design Pattern can be used in the case of a
two-level decision hierarchy, where the first level decision options con-
tain second level decisions, the predicates of which are equivalent and
depend on the first level decision. In this case the contracted second
level decisions can be separated depending on the first level decision.

* Visitor
If the decision options of the decision contain other decisions, which
define the same functional and/or data structure options.

* Bridge, Template Method
If the options of the decision contain more decisions. All of these define
the same functional and/or data structure options.

x Observer, Mediator
If the decision contains decisions which define such data structures

and/or functional options as the container decision with the same, but
not equivalent decision predicates.

“marien” — 2008/9/1 — 17:42 — page 99 — #17

Decision based examination of object-oriented programming and Design Patterns 99

x Chain Of Responsibility

— If just one of the decision options (or all of them as Interpreter) contains
an embedded decision which defines such data structures and functional-
ity as the container decision and the decision predicate of the embedded
decision and the container decision are the same, but not equivalent.

x Composite, Decorator, Interpreter

— If one of the decision options contains an evaluated decision which defines
such data structures and functionality as the container decision, but this
is a statically evaluated decision.

* Proxy

Design Pattern classification based on decision archiving
What are the reasons for using archiving Design Patterns?
o If the result of the decision is used out of scope.

o If the decisions have to be executed every time, because the result of the
previous decisions can not be used again.

In these cases the archiving Design Patterns give us recipes for the solutions.

There are two solutions: According to the first solution, the decision can
be archived by a producer class hierarchy, and later the “product decision” can
be realized based on the archived producer decision. According to the second
solution, the decisions can be archived by a “decision stamp” by the help of
which the decisions can be received from the decision container in the following
decision cases.

As for the first case, the construction type of the product decisions determines
the appropriate Design Pattern. So the functionality, the data structure and the
decision predicate—which are defined by the product decisions—determine the
method of decision archiving and the use of the appropriate Design Pattern.

According to this, the classification can be described as follows:

o If the products are not defined in the same decision’s decision options as the
same class hierarchy, the choice of the appropriate product can be realized
by the archiving decision using the archiving class hierarchy.

— Builder

o If the products can be defined in the same decision’s decision options as the
same class hierarchy, and the sorted decisions (defined in a product class

“marien” — 2008/9/1 — 17:42 — page 100 — #18

100 Szabolcs Méarien

hierarchy) can be created by the archiving decision as an archiving class
hierarchy, which is symmetric to the product class hierarchy.

— Factory Method, Iterator

o If the products can be defined in the same decision as the sorted decisions in
the class hierarchy (like the previously mentioned case), the sorted decisions
can be created by the archiving decision. However, the sorted product deci-
sion class hierarchy gets the producer role, so there is not another producer
class hierarchy.

— Clone

o If the decision predicates of the different sorted decisions—which are defined
by different class hierarchies—are equivalent, the same archiving decision as
an archiving class hierarchy can be used in order to archive these decisions.
In this case, the archiving class hierarchy can archive the equivalent decisions
together, and can create them. (In this case Factory Method Design Patterns
are contracted, accordingly producer decisions will be contracted.)

— Abstract Factory

There is just one option in [1] for reusing the stored decisions in the decision
container.

o If the result of the contracted decisions can be used more times out of scope,
the results of the decisions can be stored in the decision container and the
decisions can be received from the container using the decision stamps.

— Flyweight

6. Example

The example program—which is described in this section—contains decision
repetitions. In this case the decision repetition means that the decisions have
equivalent decision predicates. As previously mentioned, the decisions which have
equivalent decision predicates can be contracted. The decision repetition will be
eliminated by contraction.

In the example, the functionality of the purchase is realized: Paying—By
Cash/By Credit card; type of purchase—As a Private customer/As a Company
customer. The decision predicate of the first decision of the program is evaluated
by purchase.setIsCompany() invocation, which will determine the type of the

“marien” — 2008/9/1 — 17:42 — page 101 — #19

Decision based examination of object-oriented programming and Design Patterns 101

purchase accordingly the mode of the printing as a voucher or an account with
different data.

The related decision’s decision predicate is evaluated by purchase.setPayBy-
Cash() invocation, based on it the type of the payment will be determined: paying
by cash or by credit card. We can interpret this situation as decision options of
the first decision case contain the cases of other decisions. So the first decision
will determine the type of the purchase as a company or a private purchase,
which determines the printing mode, and the second decision—as a contained
decision—will determine the type of the payment, that is, by cash or by credit
card. The other two decisions in the source have equivalent decision predicates to
the first or the second decisions’ predicates, so the other two decisions are decision
repetitions.

Accordingly there are equivalent decisions in the code, which have to be
eliminated by sorting the decisions into two class hierarchies. If we examine the
decisions and their relations, we realize that, the Bridge Design Pattern can be
detected based on the relations of the decisions. In this case the Bridge Design
Pattern is “hidden” by defining the relating decisions in the methods, but sorting
these decisions into the class hierarchies, the definitions of the relating decisions
will be adopted to the known definition form of the Bridge Design Pattern. So the
“hidden” Bridge Design Pattern will be introduced by sorting the decisions and
defining them into more abstract forms, by which the decision redundancies will
be eliminated and the Bridge Design Pattern will be realized in its better-known

form.
Abtraction I plesm entor
. o
— i *operstion) T operstionimpl)
[ﬁ [I
Reinedietradion Corcra emplementor & Corcrd dmplementorB

|

|

|

| —j
—imp.operaionimp

Diagram 6. Class diagram of Bridge Design Pattern [1]

In our interpretation the Bridge Design Pattern shows the method of decision
elimination for the given decision relations.

“marien” — 2008/9/1 — 17:42 — page 102 — #20

102 Szabolcs Méarien

As we can see, the use of a Design Pattern can be noticed based on the
relations of the decisions when it is defined in “hidden” mode in a method.
The example is based on Java syntax [8].

Level 1

As it was mentioned, there are decision repetitions in the source, so there
are decisions with equivalent decision predicates. These decisions can be sorted,
and the data-structure and methodology—which they define—can be contracted.
In the example, the first decision determines the type of printing. The decision
options of the first decision contain the decisions about the type of payment such
as paying by cash or by credit card.

Level 2 — Sorting the “Company or Private Customer?” decision

Two decisions were contracted. The first is defined in the setPurchaselnfo
method, where, based on the type of the purchase (isCompany) the program
determines the parameters, which can be asked from the customer. (nameOf-
Customer, addressOfCustomer or firstName, lastName). The other decision, the
decision predicate of which is equivalent to the previously mentioned decision’s
decision predicate, is defined in the printBill method, where according to the pre-
viously mentioned decision, the type of the purchase (isCompany) determines the
printing data.

The container decisions are sorted into a class hierarchy eliminating the de-
cision repetition.

The type of the customer is determined in the main method, which is archived
by the purchase object.

/** Setting the customer’s type. */
Scanner sc = new Scanner(System.in);
System.out.println("Billing for Company? ");
Purchase purchase;
if (sc.nextBoolean()) // Billing for Company?
purchase = new CompanyPurchase(pay);
else
purchase = new PrivatePurchase(pay);

The decision predicate is an input parameter, which is determined by sc.next-
Boolean(). It is archived by the instantiation of one of the Purchase subclasses

“marien” — 2008/9/1 — 17:42 — page 103 — #21

Decision based examination of object-oriented programming and Design Patterns

103

appeprate DITE privted.
Pk statcucld mah EStivg | ans]
th{ P UIChazE purcham=1ew PIGiaei;
prEbae g thcom panyi;
PrELAZe EPLIChaE i,
P Ebaze 2 tPay ByCash i
puEkase m=tPay hfon;
preiaze pivs G;
veate b ava il np iR lm ateh Excs plon 63

Srystem e lE1 G
i

rmetiig the hprtpaametk ot e prickas by whkch e

System erLpib i The Bmatofpa@m e s ar wotappeprate ©;

Prichase
0NN mGer: ht= -
pCompary DBookan = tle
et am et vstom e Stiig
Srackie S s Eme 1St
Frpay Brsask CBookan =
Sepquiedimontit=0
Sepaldamonet: it=0
SvEoe edAmaonit: ht=0
Seranzacton N e lit=0
ScaplNumber: it=0
Zepthane © Stiig ="
Frlastiame © Stilig ="

Sepyrohas dssam pary | Bookats
St malhj vok
— e tacompanyy Tk
P e hase Wt vald
et ayEByTash) vel
P aylibd vokl
—petP Ay ito g vold
|— Sp e G ve K

e i |

TRefris Wit the dat ot pay g basec ob It type S F
PHLAE SN PPy It
It ay ByCash)
R B I Nem ke £ BIINEm e 4

TVPak Am ot TSt g sale O rpalism o b+

"B Ham e £+ DIINambe +

" CARl Hum be © TSt g vale CteadHem be h+

¥

TrREQUIED Aman it THIWNG A e DT g e dsmon i h+

T REcE Med Amo et T+t yalne O e MedAm onnt;

"Rl Amonat TS iNg pa e O tae g e dam o b+

S Taizacton Numbe " +5tlegyalie OrdEecaction Nem be b

T - s s i i

|Curman_‘.r or Private Customer

ST SEMNG e casome s ype s

PINAE Okl $e HES0m pary]
SCANNE [EC = hEW SCANRE NSEtem . In);
Srystem o vt rntn C B Mg for Com parys
ECampary=sc.ae oo lean o

type

pivak okl @ tPychas bif
SCANE[E0 = REW SCANNE IEEtem v}
INECEm paryy

SyEtem ONtpAa e Ham e STCAEBmNEn),
VAl B ORZom pavy = saertlie
Shstem ontpdate CAdd s OTSastome T
add Sl Tompary =scaextlive &}
elin{

SyEtem oUtEAEte CFIET vame: Ty,
TIEtHam & = sohe et lhe

System ontpiatieLastame: ",

¥

I Getteg the chstome 5 data baed on castomers Ly |

it sty the payin e nttype

pilvat vald s tPay By Cash
SCANNETEC= NEW SCANNE ISVIEM)
Sysem ontpiitle § Pay By Camty;

| lastam e = szae oLl O
| | pay By Cash=gcaesatfoolean;

piak vokl @ thayit o]

| TCANNETEC= BeW Scanee SysEm
J SHEEM SNtEHNtE Bl b vm er: Ty
NN DE r=soaeathiti;

— —— —— —— | SyEEm ol R IR Amonit)

Efuiedamonit=ccaenthti;

It ay Bycami]

SyEEm ontpmeta Pl Amonet: Ty,
paldamonrt=scaerthti;

el
SHERM SNEpHNty {CarHNm e T
CaKINNmBEr=scheitits;
SHEEM oVt { Transaction Nambe £
tiaksacton Hum be r=3c heithitiy

H

it Sty the dat ofpayig basd on e type

t- B dAm onet}

| Te C& Jue dlam on=paldam on

SURIthg te data otcisbmerand payhg.7
pieat yoll privts i
WECam pavyd
Syrem.crtplaty CHam e : "+ vam e SfZom pany;
Saem.ortpiaty A e s "+ adde se0nsom p
el
SYSEM . CItpANt CFIEWam e "+ TIEtham &,

Diagram 7. Source with decision repetitions

using purchase object. The archived decision by purchase object is reused two

times:

104

“marien” — 2008/9/1

— 17:42 — page 104 — #22

Szabolcs Méarien

ler s elirg I Irpul param e lers of purchare xS
Il prinks Ihe appropriale bIY
[] b sta= u i malr= gl args €
I {
Pay pay= mew Pay
pay selPay By Carhi;
pay s elPay Ity
I ZeNrg he o kmers lype sy
wblle Purchare (Pa il - |
o ¥ pa o b v ﬁ SCANNET $C = MEW DA NSy F R mdn
| Syt e m UL pHRIECEIIRg Tof G ampany T
= Purchare purchase
— [Prnlirg e data et curlomer and payirg -/
" pagire Icsc. e o | Boke a0 BIING Tor © om pary
profected wld prn B | 5 - . ;
Sy F1em ol BT I Pay INTo: ™+ pay il Pay Infedis fpcaien new Bemeny Fuehasemas
elre
T
| | | purchare= new Priv ale Purchare gy o
purchase.selPurchare nfoc;
| purchar e pin BN }
| T T— | ca ki Al npualfiEm alch Eccep llon &
| PIENa%R Ty Flem 2 pAn AreTTre Tomal of paramelers o« rel appropiak Fx
Sy rlem 2xlk- 1}
= 5
spay @ Pay |
| | :
Sprinl BIK |
| l — ——{ Suslallee= mang Ry Pay
SPurchase — — e NN Be T t= -
—— —— —{®aabslack= se IPurchas e Infod) “opay ByTaih boolean = tme
R UIEAAMONNT: =0
TapaldAmonet: lit=0
TR o2 lved Amonnt: ht=0
TrganzactionNambe r: lit=0
1. -
ComparyFrmian P rivate P rich am searlambe r: hit=0
3 5 g
Toramen TG uslomer : Siirg = =t tam & D Stieg = e tp ay Byash §
Ed - - Telastlam e @ Stieg = 7
ol dres 5 070 Uz bomer © Zking = mtbay b —

i ompary Purchaseipay : Payh

P rivate Parchaze pay : Pay)

SprivtPay htod

[publlc ©ompany FuchaseiPag payf superipay o

It ZeMirg e compary T dala”
Broke cled yald s IPurchase Ing o]
SCAIET $C - PEW STAMENSY FlEm
S rlem oul prinieTName O Cur ke
nam e0 T R lom e r = s nex | Une o
Ty slem oul prnlincaddress O 7 Cuslomer: %)
addres sOTCuslomer = oo xlUre

Iy [

¥

FUPANING I company s dala ke ke console)
publicy oid prin B
=y slem oul prininHame : "+ nam e 018 us lom er;
Sy Flem ol ponindAd dress e sdd e s 10 U ke
super.prinlE

¥

public Filyale Furchase: Pag pay i superpay o

T

™ e llirg e prk ale dala.™?

proecled vol £ elP urchase Infole
TCANIEr TC = new ScaneriIy §lem Iny;
Sy s lem oul pinlingFirs | name:
ThriHame = ropex|Une o
2y Elem oul pnlinCLasi name: 7
Lar N & = 32 res ILInEd;

¥

g

(TR AnNng e privale dala lo e congole.”
Fub e v el B inl B

Sy slem oul prnlincFIrs irame "+ Tis INam e
Ty Elem ol pAnlieCLar name T ks N am |
Tuperprn g

| i
=

: ||

Fay by Cash or by Credit Card

P Zeling e paymenl lype. !

publlc vold selPay By Cashid

TCAMET 5C = MW S0 Elem I
Sy slem oulprinin® Pay By Carhit;
B3y By Carbw 5o rew | Boalean

i

(T Zeling he dala of pajing according ko ke paymenl fipe."
public v ald selPay InToiq

SCANMET $C = P W ST ElEm

Sy slem oul prin o BIL rumber:

Sy slem oul prin e Required 2
require dAmownl = sc.rexlinl
I ipay By C ashif
T Flem .o lpriniine Pald
padAman| = sonexink
recelyedAm ounl=p aldam ounl - required 2m ounl ;
elief
T T 1en A Ll C ard Num ber: T
cardMumber = s ik
2 5 lem .ouLprinlinTransac lon Humber
FansaclonMumber = scnexiinkl }

Amounl: Ty

wccordirg 1o he paymenl lype Hpinls e appropriake
T dala ol payirg 1o he consol.
PUBlE NI priniPay Infod

IT ipay By C ashn

relurm "B Wumber: "+ BUINum ber+

*: Required Amounl: * Siing & akied Tireq uire dém ounl+
7 Pald Amounl: THSInng . alue O Rpald Amoun b+

*: Recelued Amounl +3 bing v alue & e cely e d#m ounl;
elie
relurn "EIl Humber: ™ bllHumbers
Ti Required Amounlt: " SHing 7 akie0 Treq une dAm onl+
Card Mumber: ™ 20ing »alwo ToardNumb ers
Tranzac lon Humber; “+S0ng.value 0 T ransac lonhumbe

Diagram 8. Sorting the decision cases of container decision type

“marien” — 2008/9/1 — 17:42 — page 105 — #23

Decision based examination of object-oriented programming and Design Patterns 105

purchase.setPurchaseInfo();
purchase.printBill();}

In the setPurchaselnfo method, according to the type of the customer the
private or company data are set. In the printBill method according to the type
of the customer the private or company data are printed.

The CompanyPurchase class—as the subclass of the Purchase class—is avail-
able, if the type of the customer is a company as it is decided in the Main method.
It is necessary to receive and print the name and address of the company The
PrivatePurchase class—as the subclass of the Purchase class—is available, if the
type of the customer is not a company as it is decided in the Main method. It is
necessary to get and print the firstName and lastName of the customer.

Level 3 — Sorting the “Paying by cash or credit card” decision

At this Level the known form of the Bridge Design Pattern will be realized
by sorting the decisions about the payment type. The decisions of the payment
type are sorted into the class hierarchy, in which the different paying modes are
defined in the subclasses as the decision options. If somebody pays by cash, the
number of the credit card and the transaction number are not necessary, but the
paid and received amounts are required. In the case of paying by credit card
the received and paid amounts are not necessary, but the credit card number
and the transaction number are required. After the contraction of the equivalent
decisions of the paying mode was executed (which were in the setPayInfo and
the printPayInfo methods as it was defined in Level 2), the decision about the
paying mode will be executed just once, which will be enclosed and archived by
the “Pay” class hierarchy and the enclosed decision will be reused on the next
occasions.

The payment type is determined in the main method, which is archived by
the pay object.

/** Setting the type of paying. */
System.out.println("Pay By Cash?");
Pay pay;
if(sc.nextBoolean()) // Pay By Cash?
pay = new PayByCash();
else
pay = new PayByCreditcard();

“marien” — 2008/9/1 — 17:42 — page 106 — #24

106 Szabolcs Méarien

TURTIEr teI0rg T IMOUT parame ks of purchare 1| pnis (e appropiale oilo7 B
pbllc 5 lallc v old maln Skingd amg s {
|— Iy { SCAET 5C = MW Do S 5 kW
7T Zeling he paymenl lipe.
| Sy Tlem SULDARINT Py By Carly
Pay pay;
Hisc.rexBoclean i Pay By Cash?
| = new Pay ByCash
_‘plhllc Purchar ePay pay{iis.pay =pay ¥ Ij else
[| pay= new Pay By red! IS anic;
pay e IPay Infos;
7 Prinirg (e daks of cur b er and pag g | 1 S 1Ig B cUSkomers 1ype.t
| T [protecied u b priniemog Zyslem oul.pinlin Bllng Tor € om pary T
S ¢ lem oul prinincPayinto: % pay i IPay Inodi; Purchase purchase
| | ¥ | i |Baslean i BN Tar C ompary T
PUREhatE= MW COmp Ay PUEChate (hay)
| | elze
| puchares rew Piluale Purcharenay s ;
purchae s¢ | Purzhase Infa;
| | w4 A5 Nack - | purchase pin B
Pichaz oalchiaya il o M1 akch Excep lon e
| | Rl | Ty sk merpinincTle Tormal of parame lers are nol o rop alk F;
Sy sk mexl k-1
| [Sprntl J ¥
—— — ®weslalcs = mang —
[esahskacl-- selPurchase Infad Ry BT
Pay
? sblllNember: lnt=-i
| . FergEdAmont: it=0
ComparyP 1 chase Filvate Farchase SmtPayh b —]
Tenane 010 K lome ¢ kg = = :ﬂsmame TStig = Secabrtact-- platPaylin g
Eradire 33070 s lom er © SHing = “laztame : Sthg = [} |
|r o ompary Purchareipay : Pay) P rivak Parchae pay Pay |
| |
| |pm||c Coompany Purchare Py pay d fUperpay & D] | | P ay By B d AT PayBpcash |
“ || Tearzactil N be 1 Wt -0 FEpaldtmonit: it=0
" S llieg ke com pang s d alka, | Tecadl Mumber: it =0 e oz lved Bmonat: it=0 |
|LProlrcDM weld selPuchase Infe{ | |
SCAWR T 50 = W ST T lem |
= e m. ol prn I am e 07 Curlomer: | 1 Zelling ke dalactpayIng according lo ke paymenl Iy pe."
| T 0 T 19 €1 = S0 [Lned | | publiz weld 5¢1Pay Tad N '}
S 5 mLOUL TN INCAT 18T 0T C Upamer | AT 10 = rewW SCARTEY T kMK
Aldress0TC LT omer = To.nex L | | £l oUBARIBIL I ber :
| 3 | blllNumber = seres ks
S 5 lem oULDARIECR e uired Amoun:
| I Pindrg e compang s dak ke Ihe coredle] | | re quired Amouni = cres il
public v ol pnd BN |)
L s e oulprinline Wam e ™ ram 6 1C us lom er;
1 i SULPIRING A0Are s 2 ™ SIATEEE01C us ko &r; | |
e e | S 1ing e daka of paying by cred Il canl L,
3 | | Dbl vl se P ay Kt
per e |Pay MTo;
| | Scanmer 1o = new STaner § km G
public Privale Purchase Pay pag i f super a3 — | | 5 lem ol pinleeC and Num ber:
| caINum ber = $C.0eE IR
L o o o Lo | | 2z lem ol pinlndTrars aclon Humber:
prokeled wold 5 ¢ Purchase nfodf — | D =TS o B0 ER
SCANET 5T w NEW DA NS T kM | ¢
o B OIS G 17 PARIMY e daka of pay Irg by credll cand b be consol) (=
fhiMame = scneslLie | b ublic SHing prin Pay B Tacd
o=l P T T i3 | 7| retum B Mumber: " b1 Bumbers
CA00CE © 63 *; Required Amounl: “+SKIng vakied Trequired fm cunls
D | G Mumber: " SIRg v aUeO Tard N umber s
*; Tranzac fon Number: *+2iing . el Iranssslionkun bers;
TPANARY B cutbomers privak dalalo ke J k)
congele.
AT AR 5 rg e dala of paying by carh. I,
Sy rlem oulpinlineFrsiname: s Mam e (RS O BG) LA —
T s lem oulpnlin Las inam e : ™+ las [Hame TR [|
superarnIBNG; SOANET TC = NEW SO T kM
N T 5 1em oU LRI Pak Am ounl:
pablAmoun | = 52 e xlink; |
recely e Am cunlapall Am ouni - requkedSm ounl;
} |
TTPANING Il Aala of paying by carh Ia e conal L,
publis Shirg print Pay Indec]
1 IEREN Humber: ™ bllNumbere
Required AmoLnl: “+ZIing. v alied T uled m oun [+
Pald Amaunl SINrg.u A0 Tpad A sunl
i Recthed Amounl: " SHg @A D THecely el Ameunls;
¥

Diagram 9. Sorting the decision cases of second decision type

“marien” — 2008/9/1 — 17:42 — page 107 — #25

Decision based examination of object-oriented programming and Design Patterns 107

The decision predicate is an input parameter, which is determined by sc.next-
Boolean(). It is archived by the instantiation of one of the Pay subclasses using
pay object. The archived decision by pay object is reused two times:

pay.setPayInfo();
pay.printPayInfo();

In the setPayInfo method according to the payment type the data of paying
by cash or by credit card are set. In the printPayInfo method (invocated in the
printBill method) according to payment type the data of paying by cash or by
credit card are printed.

The decisions of the payment mode with different methodologies will be de-
fined in the Pay class hierarchy. The two decision options differ in receiving and
printing data about paying.

The PayByCash class, the subclass of the Pay class is available, if the cus-
tomer pays by cash as it is decided in the Main method.

The PayByCreditCard class, as the subclass of the Pay class is available, if
the customer pays by credit card as it is decided in the Main method.

7. Conclusion

The new interpretation of the object-oriented paradigms was described, which
makes the object-oriented designing and programming easier.

As it was described, there are connections between the decision based in-
terpretation of the object-oriented paradigms and Design Patterns, so Design
Patterns give us recipes to eliminate the decision redundancy and archive the
decisions. The applicability of the conception was presented through an example,
in which the decision redundancies were eliminated by the introduction of the
Bridge Design Pattern.

In the next papers we are going to examine the relationship between the
application of Design Patterns and the decline of the decision repetition and be-
tween the program quality and (the number of) decision repetition. Based on the
described interpretation of Design Patterns, their aims are realized clearly, which
will help their better understanding. We will also determine the formalization of
Design Patterns according to the decision-based conception based on the JML [6].
Using the formalization method we will realize the description of Design Patterns
more exactly and the influence of the decision-based conception on the quality of
the programs can be analyzed.

“marien” — 2008/9/1 — 17:42 — page 108 — #26

108 Szabolcs Méarien

According to our plan, we will examine whether the decision repetition in the
design and in the source can be eliminated by sorting them automatically, by the
help of which the upgrading of the quality of the design and the source can be
realized automatically, too.

Using the new decision-based conception a new, more natural classification of
Design Patterns was described, by which we would like to launch the discussion
about establishing the existing classification [1]. In order to examine the cor-
rectness of the briefly described classification we are planning to publish further
articles and compare it with the existing classification.

References

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Professional Computing Series,
1995.

[2] J. Rambaugh, I. Jacobson, G. Booch, The unified modeling language reference man-
ual, Addision-Wesley, 1998.

[3] T. Taibi, D. Chek Ling Ngo, Formal Specification of Design Patterns—A Balanced
Approach, Journal of Object Technology, Multimedia University, Malaysia (2003).

[4] A. H. Eden, J. Gil, Y. Hirshfel, A. Yehudai, Towards a Mathematical Foundation
For Design Patterns, Computer Science Department and Department of pure math-
ematics, Tel-Aviv Univerity, IBM Research and Technion.

[5] T. Mikkonen, Formalizing Design Patterns, ICSE’98—IEEE Computer Society
Press, 1998.

[6] L. Lamport, The temporal logic of Actions, 1994.

[7] G. Kusper, Programtervezési mintdk értelmezése normalformaként, Networkshop
konferenciakiadvdny, Miskolc, Hungary (2006).

[8] JavaTM 2 Platform Standard Edition 5.0,
http://java.sun.com/j2se/1.5.0/docs/api,
http://java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html.

[9] K. Fisher, J. C. Mitchell, Notes on typed object-oriented programming, Computer
Science Dept., Stanford University, Stanford, 1994.

[10] H. Albin-Amiot, Y. Guéhéneuc, Meta-Modeling Design Patterns: Application to
Pattern Detection and Code Analysis, Workshop on Adaptative Object-Models and
Metamodeling Techniques, ECOOP (European Conference on Oriented Program-
ming) (2001).

[11] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Object-Oriented
Modeling and Design, Prentice-Hall International Editions, New Jersey, 1991.

[12] M. Piefel, Object Oriented Software Development—Coursework ‘Information Engi-
neering’, Department of Computing, University of Bradford, 1996/97.

“marien” — 2008/9/1 — 17:42 — page 109 — #27

Decision based examination of object-oriented programming and Design Patterns 109

[13] Software Quality Metrics for Object Oriented System Environments, Software As-
surance Technology Center as SATC, 1995.

[14] O. Nierstrasz, Survey of Object-Oriented Concepts, University of Geneva.

[15] G. Booch, Object Oriented Analysis and Design with Applications, Adison-Wesly,
1994.

SZABOLCS MARIEN

H-3433, NYEKLADHAZA
JOZSEF ATTILA UT 2

and

UNIVERSITY OF DEBRECEN
H-4032, DEBRECEN
HUNGARY

E-mail: mariensz@hotmail.com

(Received August, 2007)

