
i

i

“katai” — 2008/9/1 — 18:28 — page 139 — #1
i

i

i

i

i

i

tmcs@inf.unideb.hu

http://tmcs.math.klte.hu

6/1 (2008), 139–152

“Frontier algorithms”

Zoltán Kátai

Abstract. In this paper we present a new method to compare algorithm design strategies.
As in case of frontier towns the cultures blend, the so called “frontier algorithms” are a
mixture of different programming techniques like greedy, backtracking, divide and con-
quer, dynamic programming. In case of some of them the frontier character is hidden,
so it has to be discovered. There are algorithms that combine different techniques pur-
posively. Furthermore, determining the programming technique the algorithm is using
can be a matter of point of view. The frontier algorithms represent special opportunities
to highlight particular characteristics of the algorithm design strategies. According to
our experience the frontier algorithms fit best to the revision classes.

Key words and phrases: teaching methods, algorithm design strategies, programming
techniques, case study.

ZDM Subject Classification: B20, B50, B70, C70, P00, P50, Q00.

Introduction

“To teach means scarcely anything more than to show how things differ from

one another in their different purposes, forms, and origins. . . . Therefore, he who

differentiates well teaches well” [1]. How can we apply this principle stated by

Comenius in case of algorithm design strategies (programming techniques) like

greedy, backtracking, divide and conquer, dynamic programming?

The most of the teachers make this comparison analysis by a parallel review of

the main characteristics of the studied techniques [2, 3]. A further, more concrete

method is to solve the same problems with different techniques [4]. Kátai in his

paper entitled “Upperview” algorithm design in teaching computer science in high

Copyright c© 2008 by University of Debrecen

i

i

“katai” — 2008/9/1 — 18:28 — page 140 — #2
i

i

i

i

i

i

140 Zoltán Kátai

schools [5] presents a new way of comparing programming techniques. The goal

of the “Upperview” method is, beyond the presentation of the techniques, to offer

the students a view that reveals them the basic and even the slight differences

and similarities between the strategies.

The “Upperview” method makes possible a uniform discussion of all the above

mentioned techniques. The students can see each technique in the same time next

to each other. This way it becomes possible to integrate all four techniques into

a frame which forms a whole. If the students recognize the position of certain

techniques related to the others, then the so called “more difficult” strategies

become available for them.

Katai notices that, in order to carry out an “upperview”, a so called “abstract

platform” might be necessary, where the entities (the techniques) being analyzed

can be laid down next to each other in such a manner that the features and

connections essential for the analysis become obvious. After a brief presentation

of the core of the four strategies Katai concludes that all the techniques they

are going to present are especially applied in the case of problems that have a

hierarchic construction.

For example all techniques can deal with certain optimizing problems. Usu-

ally these problems consist of a target function which has to be optimized through

a sequence of (optimal) decisions [5, 6]. So, for each optimizing problem a decision

tree (tree structure) can be ordered. The root represents the starting state of the

problem, the first level nodes represent the states the problem can reach after the

first decision, the second level nodes those reached after the second decision etc.

A node will have as many sons as the number of possible choices for the respective

decision. Figure 1 presents a situation when the solution is obtained after four

Figure 1. Decision tree

i

i

“katai” — 2008/9/1 — 18:28 — page 141 — #3
i

i

i

i

i

i

“Frontier algorithms” 141

decisions. At each decision there is a choice of two possibilities. The labels of the

nodes identify the corresponding states. By each decision the problem is reduced

to a similar problem of smaller size, represented by one of the subtrees of the

current node. In this situation the optimal solution will be represented by one of

the root-leaf paths on the decision tree. The dotted rectangles show the way in

which—in case of the bold arrows road is the optimal—the problem is reduced to

its smaller and smaller subproblems.

In conclusion we can say that from the point of view of the techniques each

one considers the problem as a tree structure. According to Katai this common

tree structure is that abstract platform—necessary for the “upperview”—where

the techniques can be laid next to each other

Katai establishes two criteria of comparison:

(1) How do the certain techniques traverse and “prune” the tree that can be

associated to the problem?

(2) How do the four techniques “build up” the solution for the problem?

In this paper we are going to describe a fourth method to compare algorithm

design strategies. As in case of frontier towns the cultures blend, the so called

“frontier algorithms” are a mixture of different programming techniques. In case

of some of them the frontier character is hidden, so it has to be discovered.

There are algorithms that combine different techniques purposively. Furthermore,

determining the programming technique the algorithm is using can be a matter of

point of view. As a marriage sets off the masculinity respective the femininity of

the spouses, the frontier algorithms represents special opportunities to highlight

particular characteristics of the algorithm design strategies. According to our

experience the frontier algorithms fit best the revision classes. Discovering hidden

things, observing how matters complete each other and discussing different points

of views are interesting tasks for the students. In the following we present four

frontier algorithms.

The binary search algorithm

The binary search algorithm solves, for example, the following problem: De-

velop a function for locating efficiently an element of a particular value within a

sequence of sorted elements. [7] Assume that the ascending sequence of numbers

is stored in the array a[1..n], and the number we are looking for is x.

i

i

“katai” — 2008/9/1 — 18:28 — page 142 — #4
i

i

i

i

i

i

142 Zoltán Kátai

The basic idea behind the binary search algorithm is to compare x with the

middle element of the array a (a[n/2]). If the two elements are equal, the binary

search function returns the index of the middle element. Otherwise, if the value we

are searching for is less or greater than the middle element the searching process

is continued (in the same way) either in the subarray a[1..n/2-1] or subarray

a[n/2+1..n], respectively. The function returns 0, if the current array section

has become empty.

Since at each step the current interval is divided into two halves, this algo-

rithm is traditionally considered a divide and conquer technique and consequently

implemented as a recursive function. Despite of this fact we will show that this

algorithm contains several greedy elements, and misses key elements of the divide

and conquer technique.

The greedy technique is usually used in case of optimizing problems. Can the

binary search algorithm be seen as optimization? Yes it can on account of the

term “efficient” in the description of the problem. Contrary to the linear searching

that needs n comparisons in the worst case, the binary search algorithm solves

the problem after only log(n) decisions even in case the number we are searching

do not exist in the array. The linear algorithm can also be considered as the

one that divides the current interval (a[i..n]) into two parts: a[i..(i-1)] (an

empty interval) and a[(i+1)..n]. In the worst case, at each step, the algorithms

have to continue the searching process, and they have to do this in the greater

part of the divided interval. If the length of the current interval is m, then

the length of this “greater part” (after the comparing operation) varies between

((m − 1)/2) (the optimal value) and (m − 1). Since the binary search algorithm

at each step eliminates the maximum possible search space (exploiting the fact

that the searching process takes place in a sorted array) we can state that it takes

optimal decisions regarding the time complexity of the algorithm.

A binary tree can be attached to the problem. The whole array is ordered

to the root node and the intervals (gained through the dividing process) to the

other nodes. The leaf nodes represent the empty intervals, excepting the one that

is attached to the interval having as middle element the number we are looking

for (in case the searched value exists in the array).

A divide and conquer algorithm works by recursively breaking down a problem

into two or more sub-problems of the same type, until these become simple enough

to be solved directly. The solutions to the sub-problems are then combined to

give a solution to the original problem. In case of the tree attached to the problem

the dividing process takes place in preorder and the building one in postorder.

i

i

“katai” — 2008/9/1 — 18:28 — page 143 — #5
i

i

i

i

i

i

“Frontier algorithms” 143

Consequently, the divide and conquer algorithms “announce the result” of the

problem solving process getting back to the root. A greedy algorithm builds the

globally optimal solution through a sequence of locally optimal decisions. At each

step the current problem is reduced to one similar subproblem. In other words it

traverses only one root-leaf path of the decision tree, and provides the solution in

the “optimal leaf” of the decision tree. Therefore the greedy strategies are usually

implemented as iterative algorithms.

Analyzing the binary search algorithm from this point of view the following

statements can be concluded:

• Although at each step the current interval is divided into two sub-intervals,

the searching process is continued only in one of them. Because of this fact

all steps can be seen as “greedy decisions” that reduce the current problem to

one subproblem (to find the searched element in half of the current interval).

• The binary search algorithm can provide the solution of the problem in the

“optimal leaf” of the decision tree, which is again typical of greedy algorithms.

This fact explains why the iterative implementation of this so called divide

and conquer algorithm is so obvious.

• According to the statements above in case of the binary search algorithm

the solution building momentums of the divide and conquer strategy (at the

postorder visits of the subproblems) are missing.

The Dijkstra algorithm

Dijkstra’s algorithm, named after its discoverer, is a greedy algorithm that

solves the single-source (s) shortest path problem for a directed graph with non

negative edge weights. [7] Despite of this fact we will show that beside its greedy

characteristics this algorithm contains some dynamic programming elements, too.

One of the main differences between these programming techniques is that

the greedy algorithms are top-down strategies whereas dynamic programming

applies a bottom-up approach. The greedy approach with each decision reduces

the problem to one of its subproblems. The dynamic programming algorithms

start from the optimal solutions of the trivial subproblems and build the optimal

solutions of the more and more complex subproblems and finally of the original

problem.

The Dijkstra algorithm works by keeping, for each vertex v, the cost d[v] of

the shortest path found so far between s and v. Initially, this value is 0 for the

i

i

“katai” — 2008/9/1 — 18:28 — page 144 — #6
i

i

i

i

i

i

144 Zoltán Kátai

source vertex s (d[s] = 0), and infinity for all other vertices, representing the fact

that we do not know any path leading to those vertices. When the algorithm

finishes, d[v] will be the cost of the shortest path from s to v—or infinity if no

such path exists.

The algorithm maintains two sets of vertices S and Q. Set S contains all

vertices for which it is known that the value d[v] is already the cost of the shortest

path and set Q contains all the other vertices. Set S is initially empty, and in

each step one vertex is moved from Q to S. This vertex is chosen as the one with

the lowest value of d[u]. This is the greedy part of the algorithm. When a vertex

u is moved to S, the algorithm relaxes every outgoing edge (u, v). That is, for

each neighbour v of u, the algorithm checks to see if it can reduce the weight of

the shortest known path to v by first following the shortest path from the source

to u, and then traversing the edge (u, v). If this new path is better, the algorithm

updates d[v] with the new smaller value.

On the one hand, from the point of view of set Q, this algorithm is a veritable

greedy strategy. At each step, after a greedy choice, set Q (representing the

remained subproblem that has to be solved) is reduced to a smaller one. On the

other hand, from the point of view of set S, at each step the next shortest path is

determined and a new vertex is added to this set. According to the principle of

optimality the cost of the current shortest path is calculated on the score of the

costs of the already determined shortest paths. This approach is characteristic

of dynamic programming strategies. This duality can be explained by the fact

that the principle of optimality is true for this problem in two forms: if the

optimal (greedy) succession of the vertices is (u1, u2, . . . , ui, . . . , un), then both

(u1, u2, . . . , ui) and (ui, ui+1, . . . , un) are optimal sub-successions (i = 1, n). The

first form is exploited by the dynamic programming elements, and the second

one by the greedy part of the strategy. In other words, the greedy technique

establishes the order the dynamic programming has to calculate the shortest

paths, and the dynamic programming readies\approves of the greedy choices.

The knapsack problem

The knapsack problem is a problem in the field of combinatorial optimization.

It derives its name from the following maximization problem of the best choice of

essentials that can fit into one bag to be carried on a trip. Given a set of items,

each with a cost and a value, determine the number of each item to include in a

i

i

“katai” — 2008/9/1 — 18:28 — page 145 — #7
i

i

i

i

i

i

“Frontier algorithms” 145

collection so that the total cost is less than a given limit and the total value is as

large as possible. [7, 8]

In the fractional version of a problem the items can be broken into smaller

pieces, so that the hiker may decide to carry only a fraction xi of object i, where

0 ≤ xi ≤ 1. This problem can be solved by a greedy algorithm in polynomial time.

Then again the greedy approach cannot warrant the optimal solution for the 0/1

version of the problem (xi ∈ {0, 1}). An option would be to use backtracking

strategy that generates all possible collections and selects the optimal one of

them. Unfortunately this algorithm has exponential time complexity. Although

the best solution for this problem is a pseudo-polynomial dynamic programming

algorithm, an interesting frontier algorithm can be developed by improving the

backtracking approach with greedy elements.

Since in connection with each item there are two possibilities (to put it into

the bag or not), an n-level binary tree can be attached to the 0/1 knapsack

problem. The optimal solution is represented by the optimal root-leaf path. The

backtracking technique in its primitive form traverses the entire tree in its depth.

In a first phase this algorithm can be improved by generating only collections

that fit into the bag. A second optimization would be to keep a record of the

current cost (the sum of the costs of the items that have already been put into

the bag). If the sum of the costs of the remained items is less than or equal with

the remained free space in the bag then all remained items are packed into the

bag without traversing the current sub-tree. How can this strategy be enhanced

more by using greedy elements? Let the items be considered in greedy order,

and for each item let the “put it into” variant be analyzed first (see Figure 2).

This strategy provides the potential solutions in a specific order (first the greedy

solution of the 0/1 knapsack problem). The key idea of this third optimization

is to investigate first if there are any chances of finding the optimal leaf in the

current right sub-tree. In order to do this the algorithm switches provisionally

to the fractional knapsack problem, and the searching process is continued by a

“fractional greedy” procedure. If this “overestimated” optimum value (the “0/1

optimum” is less or equal then the “fractional one”) is not better than the best

solution the backtracking algorithm has found up to the current node, then the

current sub-tree does certainly not contain the optimal leaf and its traverse can

be abandoned.

i

i

“katai” — 2008/9/1 — 18:28 — page 146 — #8
i

i

i

i

i

i

146 Zoltán Kátai

0, 0

2, 5 0, 0

3, 7 2, 5 1, 2

3, 7 5, 9 2, 5 4, 6

4, 8 3, 7 5, 9 3, 4 5, 7

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0

1 0

Figure 2. The binary decision tree attached to 0/1 knapsack problem
in case of 4 items, the costs of them are {2, 1, 3, 1}, the values of
them are {5, 2, 4, 1} and the total cost capacity of the bag is 5. The
bolded root-leaf path represents the optimal solution. The visited
nodes contain the current cost and value. The “fractional greedy”
procedure is called in the grey right-son nodes. The first and third
optimizations use single and double line “shears”, respectively.

Mouse in a Maze

Problem Specification: Design a program to calculate the length of the op-

timum path in a maze from the mouse to the cheese. The maze is represented

by the binary array a[1..n][1..m] (1—wall, 0—free space), and the positions

of the mouse and cheese are (xm, ym) and (xc, yc), respectively. The mouse can

move in left, right, up and down directions. [6]

The teacher presents the following “cousin algorithms” and the students have

to determine (and justify) the applied programming techniques: backtracking or

divide and conquer (it is worthy to note that the most efficient algorithm for this

problem is also provided by the dynamic programming technique). Parameters

x and y localize the current position of the mouse. Parameter k indicates the

number of steps that has been made by the mouse on the current path from its

initial position to its current position. Parameter kmin stores the length of the

optimal path. The “bold parameters” are transmitted by address and the others

by value. h1, h2, h3, h4 are local variables.

i

i

“katai” — 2008/9/1 — 18:28 — page 147 — #9
i

i

i

i

i

i

“Frontier algorithms” 147

m 0 0 0 0 0

0 1 1 1 0 0

0 1 0 0 0 1

0 0 0 1 0 c

1 2 3 4 5 6

1

2

3

4

Figure 3. A maze (n = 4, m = 6). The starting position of the mouse:
(1, 1). The position of the cheese: (4, 6).

Figure 4 shows the decision tree that can be attached to the problem. The

grey nodes represent the dead ends and the bold ones the solution leaves (the

broken line rectangle indicates the optimal leaf). The optimal path of the mouse

is marked by a bold line. The identical subtrees are circled.

The similarities between the procedures presented above can be ascribed to

the fact that both techniques (backtracking and divide and conquer) traverse the

tree behind the problem in its depth. The differences are due to the opposite direc-

tions in which the two techniques build up the solution (backtracking—from root

i

i

“katai” — 2008/9/1 — 18:28 — page 148 — #10
i

i

i

i

i

i

148 Zoltán Kátai

(3, 4)

(3, 3)

(4, 3)

(4, 2)

(4, 1)

(3, 1)

(2, 1)

(4, 5)

(4, 6)

(1, 6)

(2, 6)

(2, 5)

(3, 5)

(3, 5)

(2, 5)

(4, 5)

(4, 6)

(3, 4)

(3, 3)

(4, 3)

(4, 2)

(4, 1)

(3, 1)

(2, 1)

(2, 6)

(1, 6)

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(1, 6)

(2, 6)

(1, 4)

(1, 3)

(1, 2)

(1, 5) (2, 6)

(1, 6)

(1, 5)

(1, 4)

(1, 3)

(1, 2)

(2, 5) (4, 5)

(4, 6)

(2, 1)

(3, 1)

(4, 1)

(4, 2)

(4, 3)

(3, 3)

(3, 4)

(3, 5)

(1, 1)

Figure 4. The decision tree attached to the “Mouse in a maze” problem.

to leaves, divide and conquer—from leaves to root), and the different order they

deal with the nodes (backtracking—preorder, divide and conquer—postorder).

i

i

“katai” — 2008/9/1 — 18:28 — page 149 — #11
i

i

i

i

i

i

“Frontier algorithms” 149

These strategic differences explain why backtracking selects the optimal solution

out of several potential ones, as long as divide and conquer builds only one solu-

tion, the optimal one (a tree has many leaves but only one root).

An unusual “summit”

How can teachers of computer sciences make use of the above presented ma-

terial during revision classes? In order to make these classes funnier they should

organize them as summits. At a previous class the teacher divides the students

into four groups, each group representing a “country”. The countries are Back-

tracking, Greedy, Divide and conquer and Dynamic programming. All groups get

the agenda of the summit. The agenda contains, for example, the following items:

(1) Petition sent up by the Greedy delegate wherein they contest the exclusive

divide and conquer statute of the binary search algorithm.

(2) Petition sent up by the Dynamic programming delegate wherein they claim

recognition of their contribution to the Dijkstra algorithm.

(3) The Backtracking and Greedy delegates present a common project for the

“Knapsack problem”. The Dynamic programming delegate criticizes their

proposal.

(4) The Backtracking and Divide and conquer delegates present the results of a

common research about two cousin frontier algorithms (P1 and P2).

The summit is chaired by the teacher. In case of the first point the petitioners

start the discussion by presenting their arguments. The Greedy delegate identifies

the greedy elements in the binary search algorithm emphasizing their importance.

Parallel with this, they have to try to diminish the significance of the divide and

conquer attributes of the algorithm. After that the Divide and conquer side has

the opportunity to answer them.

At the second point, the Dynamic programming delegate highlights the im-

portance of the principle of optimality in the solution building process of the

Dijkstra algorithm. The Greedy side has to defend their primary role in this

algorithm.

In connection with the “Knapsack problem” the sides have to stress how their

collaboration enhanced their previous individual attempts to solve this problem.

They also have to explain how the similarities and differences between these tech-

niques made such an efficient cooperation possible. The Dynamic programming

delegate reasons for the superiority of their solution in the case of this problem.

i

i

“katai” — 2008/9/1 — 18:28 — page 150 — #12
i

i

i

i

i

i

150 Zoltán Kátai

The two delegates have to localize the elements that endow procedures P1

and P2 with backtracking and divide and conquer character, respectively. They

also have to identify and explain the similarities and differences between these

procedures.

Didactical aspects of the presented revision method

The above presented revision method is on intimate terms with the case

study. The case approach to teaching is something common in social sciences

and in the teaching of business studies but it is rarely used in computer sciences.

[7] The frontier algorithms can be seen as “cases” in the comparative analysis

of the programming techniques. Our “summit” provides an interesting real life

organizational context to develop students’ problem solving and analytical skills

in ways that traditional repetitive exercises cannot. Students need to learn how

to apply technical skills and knowledge in case of real life problems. These “real

life algorithms” are rarely applications of just one certain technique. They often

include elements of different strategies. To develop such algorithms efficiently,

a good command of the “philosophies and politics” behind the algorithm design

strategies is presumed. “Cases” also teach students that there is rarely one correct

answer but merely several possible alternatives with different consequences, and

the decision making process often requires significant value judgments. [9]

The participative approach to learning, central to the case study method

of teaching, is also an important tool to improve students’ communication and

analytical skills. “. . . by being forced to actively participate in a discussion a

student better internalizes his or her own ideas while preparing to communicate

with others. Also such communication assists other students to develop their own

understanding of the problem, alternatives and solution . . . ” [10]

The success of the case teaching method presumes adequate preparation (in-

dividual and in groups) on the part of students for the following reasons:

• the frontier algorithms subject fits best revision classes,

• the students have to receive the agenda of the summit in good time,

• the teacher should be available for students to help them in their preparation

for the summit.

The Harvard Business School [11] identifies three key rules for teachers: care-

ful preparation, good control of discussion, concern for the students. Most ed-

ucators would probably see these as essential ingredients of any good teaching,

i

i

“katai” — 2008/9/1 — 18:28 — page 151 — #13
i

i

i

i

i

i

“Frontier algorithms” 151

but case study proponents would stress that they are even more critical for the

effective use of case studies.

One of the major characteristics of the presented revision method is that

students have to work in groups. Students may have different learning styles.

Teachers have to take account of this diversity. Students may be introverts or

extroverts and sensing or intuitive.

Introverts are concentrators and reflective thinkers. For the introvert, there

is no impression without reflection. Extroverts prefer interaction with others, and

are action oriented. For the extravert, there is no impression without expression.

Extroverted students learn by explaining to others. They enjoy working in groups.

Introverted students want to develop frameworks that integrate or connect the

subject matter. To an introvert knowledge means interconnecting material and

seeing the “whole picture”. Introverted students especially appreciate the fron-

tier algorithms subject, extroverted students do it less (but they like to work

in groups). According to cognitive psychologists the compare/contrast analyses

and building concept maps contribute to the effectiveness of the teaching-learning

process.

Sensing students are detail-oriented, want facts, and trust them. Intuitive

students seek out patterns and relationships among the facts they have gathered.

They trust hunches and their intuition and look for the “whole picture”. Sens-

ing students prefer organized, linear, and structured lectures. Intuitive students

prefer the discovery learning. The discovery method appeals to intuitive students

and teaches sensing students how to uncover general principles. The intuitive

student can help the sensing student to discover the theory; the sensing student

can help, identify and marshal the facts of the task. Since the “summit method”

implies discovering, the group of delegates should consist of both sensing and

intuitive students. [12]

Conclusions

The presented so called “summit method” is a special application of the case

study method in teaching computer sciences. The “Upperview” method applies

analysis hand by hand with synthesis. [5, 6] In [6] the chapters that present the

techniques make use of analysis and the so called “upperview chapters” apply

synthesis. In addition, the frontier algorithms subject completes the progressive

synthesis of the “upperview” method by a thorough analysis of the algorithms on

the agenda of the “summit”. The effectiveness of the applied didactic methods and

i

i

“katai” — 2008/9/1 — 18:28 — page 152 — #14
i

i

i

i

i

i

152 Zoltán Kátai : “Frontier algorithms”

the active and participative learning environment the summit creates warrant the

efficiency of the presented revision method. Organizing the revision as a summit

teachers bring computer sciences education (in this case) closer to Comenius’

dream that study should be “entirely practical, entirely pleasurable, and such as

to make school a real game, i.e., a pleasant prelude to our whole life”.

References

[1] Comenius, Orbis sensualium pictus, 1653.

[2] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms, The
Massachusetts Institute of Technology, 1990.

[3] R. Andone, I. Garbacea, Fundamental Algorithms a C++ Perspective, Libris Press,
Cluj-Napoca, 1995 (in Romanian).

[4] http://www.cis.upenn.edu/~matuszek/cit594-2004/Lectures/

44-dynamic-programming.ppt

[5] Z. Kátai, “Upperview” algorithm design in teaching computer science in high
schools, Teaching Mathematics and Computer Science 3, no. 2 (2005), 221–240.

[6] Kátai Z., Algoritmusok felülnézetből, Scientia, Cluj-Napoca, 2007 (in Hungarian).

[7] http://ro.wikipedia.org/

[8] I. Odagescu, C. Copos, D. Luca, F. Furtuna, I. Smeureanu, Programming Methods

and Techniques, Intact Press, Bucuresti, 1994, 95–108 (in Romanian).

[9] http://lsn.curtin.edu.au/tlf/tlf1995/sims.html

[10] W. R. Knechel, Using the Case Method in Accounting Instruction, Issues in Ac-

counting Education (Fall 1992), 205–217.

[11] Harvard Business School, Hints for Case Teaching, Harvard Business School Pub-
lishing division, Boston, 1984.

[12] http://www2.gsu.edu/~dschjb/wwwmbti.html

ZOLTÁN KÁTAI

SAPIENTIA UNIVERSITY

MATHEMATICS AND INFORMATICS DEPARTMENT

TÎRGU-MUREŞ

ROMANIA

E-mail: katai zoltan@ms.sapientia.ro

(Received November, 2007)

