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Abstract. The Fibonacci series is a classical algorithm taught in computer science, usu-
ally implemented in some programming language. It is hard to find a programming
textbook which doesn’t touch on Fibonacci, and it’s most common use is in the illustra-
tion of binary recursion. There are also many ways of tailoring the basic algorithm in
order to implement it. This paper discusses some novel algorithms, which help address
some of the limitations of binary recursion, but also illustrate how differing algorithms
can be pedagogically beneficial. We introduce a simple algorithm for accurately calcu-
lating any Fibonacci number.
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1. Introduction

The Fibonacci numbers were conceived by European mathematician Leonardo

of Pisa (1175–1250) who was called Fibonacci (fib-on-arch-ee), short for Filius

Bonacci, “the son of Bonaccio”, since his father’s name was Guglielmo Bonacci.

In 1202 Fibonacci wrote Liber Abbaci, or “The Book of the Abacus”, which was

to contain one of his most infamous problems: paria coniculorum — the rabbit

problem. Suppose a newly-born pair of rabbits, one male, one female, are put in

a field. Rabbits are able to mate at the age of one month so that at the end of

its second month a female can produce another pair of rabbits. Suppose that our

rabbits never die and that the female always produces one new pair (one male,

one female) every month from the second month on. The puzzle that Fibonacci
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posed was: “How many pairs will there be in one year?”. The answer to his

problem involves a series of numbers:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89

to which his name has been applied. To Leonardo, this sequence was of little

importance, as the central focus of Liber Abbaci was the introduction of the

Hindu-Arabic numeric system. To the uninitiated, Fibonacci numbers appear as

a progression of numbers with no real significance. However Fibonacci numbers

appear in nature in a number of unexpected ways. The way in which the spiral

patterns of sunflower seeds and pine cones grow is described by the sequence, and

it is common for the number of petals on a flower to be a Fibonacci number.

Four-leaved clovers are less common than three-leaved ones because three is in

the Fibonacci sequence and four isn’t! The arrangement of structures such as

leaves around a stem, scales on a pine cone or on a pineapple, florets in the head

of a daisy, and seeds in a sunflower are examples of an aspect of plant form known

as phyllotaxis. Around the turn of the 18th century the well known Astronomer

Johanne Kepler observed that the Fibonacci numbers are common in plants. The

number of petals in many flowers, such as the daisy, can be represented as a

Fibonacci number [1]. An iris has 3 petals, buttercups have 5, some delphiniums

have 8, corn marigolds have 13, asters have 21, daises have 34, 55 or 89 petals. The

pattern of leaves as they spiral up a stem, or Fibonacci phyllotaxis, affords optimal

illumination to the photosynthetic surface of plants, since it allows for the least

amount of overlap [2]. For example in phyllotaxis ratio revolutions/(leafs:buds)

apple, apricot and cherry trees have a 2/5 ratio, a pear has 3/8, and an almond

5/13.

The number of spiral rows of fruitlets (eyes) in pineapples was studied as

early as 1933 in an article by Linford [3] published in The Pineapple Quarterly,

however no reference was made to Fibonacci numbers. In a follow-up study by

Onderdonk [2] in 1970 it was found that the majority of pineapples had 8–13–21

rows of fruitlets. This was important as it was thought that a pineapple with more

fruitlets for a given size would have a finer texture. One other place that plant life

reflects the Fibonacci sequence is in the seed patterns of pinecones and sunflowers.

The most perfect example of this is the common sunflower, Helianthus annuus

[4], where two sets of spirals are present. In pinecones, scales are arranged in

helical whorls, e.g. eight rows winding in one direction, with five in the other [5].

Outside nature, the Fibonacci series has applications in diverse fields in-

cluding the generation of musical compositions [6], colour selection in planning

a painting [7], and the conceptualization of Minoan architecture in Crete circa
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1400–2000 BC [8]. The latter application is a prime example of the role of Fi-

bonacci in the calculation of golden ratios.

2. The Pedagogy of Fibonacci

Open any textbook on programming or algorithm analysis and you are sure

to find some implementation of the Fibonacci algorithm. More often than not it

is the archetypal example of binary recursion. Yet despite this, the Fibonacci al-

gorithm is scarcely used in computer science to its fullest potential. It is the type

of algorithm that due to its innate simplicity can be used in first year courses

to introduce the concept of an algorithm. The algorithm can then be used to

illustrate loops, demonstrate recursion, and make a case for modularization. In

this capacity it offers us what we shall term a cascading case study. This is essen-

tially a case study which can be used in a sequential manner, building upon the

algorithm as new programming concepts are introduced. The various algorithms

can also be used to demonstrate algorithm complexity. Although this may seem

excessive in an introductory course, it gives students an understanding of how

different algorithms behave. Lastly it provides an insight into the mathematical

nuances of programming: generation of large integers, and overflow precision is-

sues with the use of doubles. The algorithms described in this article were all

written in C, and tested on a machine with a dual Pentium D 2.8GHz processor.

3. The Basic Algorithm

The characteristic of this sequence is that each number is the sum of its two

immediate predecessors. In other words, the Fibonacci numbers fn are generated

by the simple recurrence:

f1 = 1,

f2 = 1,

fn = fn−1 + fn−2, n > 2
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4. Why Not Binary Recursion?

The original formula lends itself to a natural, if somewhat naÏve, example of

binary recursion, which is probably the most notorious implementation found in

the literature. The algorithm works by returning one if n = 1 or 2, and the sum

of fn−1 and fn−2 if n > 2. This algorithm certainly generates the correct answer,

but what is its computational cost, i.e. how long does it take? If n is less than

two, the function halts almost immediately. However for larger values of n, there

are two recursive calls of the algorithm. This implies that the running time of the

algorithm grows at exponential time, or fn = 20.694n, which for n = 200 is 2140

operations. On the IBM Blue Gene/P, which has a speed of 1015 floating-point

operations per second, the calculation of f200 would take at least 292 seconds. To

put this into context, on a cosmic scale, the universe has existed for approximately

259 seconds, so calculation of f200 is inherently prohibitive. The biggest problem

with using binary recursion to calculate the Fibonacci numbers is the time spent

re-calculating already calculated Fibonacci numbers. For example, when calcu-

lating f40 using binary recursion, f39 is calculated once, f35 is calculated eight

times, f0 is calculated 165 580 141 times, for a total of 331 160 281 function calls.

The calculation of f40 actually takes approximately 34 seconds. This is an inter-

esting analysis, rarely made in textbooks. Few textbooks discuss alternatives to

binary recursion for Fibonacci. Indeed, the use of Fibonacci numbers to illustrate

binary recursion is a good example of when not to use recursion.

int f ib BinaryR ( int n)

{
i f (n <= 2)

return 1 ;

else

return f ib BinaryR (n−1) + f ib BinaryR (n−2);

}

5. Classic Algorithms for Fibonacci

The next most common algorithm makes allowances for the fact that efficiency

isn’t always the major protagonist in algorithm design. If an algorithm is slower,

you can always run it for longer, and wait for the result. However, there is usually

finite memory in which programs can run, so space becomes an issue in algorithm
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design. Consider the recursive process outlined above. The space used by a

recursive algorithm is the total space used by all recursive calls at a particular

time. This includes space for variables, and function arguments, and overhead

space for each call. An iterative algorithm incorporates some form of looping

structure. Given the values of the first two Fibonacci numbers, a loop is used to

calculate the n− 2 remaining numbers. Each step through the loop uses only the

previous two values of fn which requires some swapping around of values so that

everything stays in the appropriate places. So starting with f1=1 and f2=1, we

compute each successive fi such that 2 < i ≤ n by adding fi−2 and fi−1.

int f i b I t e r a t i v e ( int n)

{
int f 1 = 1 , f2 = 1 , f ;

for ( int i = 3 ; i <= n ; i=i +1) {
f = f1 + f2 ;

f 1 = f2 ;

f 2 = f ;

}
return f ;

}

The one caveat with this approach is that there is no way of storing all

the numbers. The next logical leap from this is to use a dynamic programming

approach using an array to register previous results, rather than recomputing

them.

int f ib Dynamic ( int n)

{
int f [ n ] ;

f [ 0 ] = f [ 1 ] = 1 ;

for ( int i = 2 ; i < n ; i=i +1)

f [ i ] = f [ i −1] + f [ i −2] ;

return f [ n ] ;

}

There is also a simple approach which uses a matrix [9]:

[

1 1

1 0

]n

=

[

fn+1 fn

fn fn−1

]

(1)
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int f i b Matr ix ( int n)

{
int i ;

int m[ 2 ] [ 2 ] = {{1 ,1} ,{1 ,0}} ;

int t [ 2 ] [ 2 ] ;

for ( i =1; i<n ; i=i +1) {
t [ 0 ] [ 0 ] = m[ 0 ] [ 0 ] ;

t [ 0 ] [ 1 ] = m[ 0 ] [ 1 ] ;

t [ 1 ] [ 0 ] = m[ 1 ] [ 0 ] ;

t [ 1 ] [ 1 ] = m[ 1 ] [ 1 ] ;

m[ 0 ] [ 0 ] = t [ 0 ] [ 0 ] + t [ 0 ] [ 1 ] ;

m[ 0 ] [ 1 ] = t [ 0 ] [ 0 ] ;

m[ 1 ] [ 0 ] = t [ 1 ] [ 0 ] + t [ 1 ] [ 1 ] ;

m[ 1 ] [ 1 ] = t [ 1 ] [ 0 ] ;

}
return m[ 0 ] [ 0 ] ;

}
There are of course certain algorithmic limitations to this conventional ap-

proach to calculating Fibonacci numbers. The n
th

Fibonacci number must be

defined in terms of the two before it, so to calculate the 100
th

you have to cal-

culate the 99 numbers before it. Is there a formula which solves only the n
th

and does not need previous values? Yes, the formula is Binet’s formula, derived

by Jacques Philippe Marie Binet, a French mathematician in 1843. It uses the

golden section number (φ = 1.618) and is calculated using Binet’s Algorithm:

fn =
φn − (1 − φ)n

√
5

(2)

int f i b B i n e t ( int n)

{
double phi ;

i f (n < 2)

return 1 ;

phi = (1 . 0 + sq r t ( 5 . 0 ) ) / 2 . 0 ;

return (pow( phi , n ) − pow(1−phi , n ) ) / s q r t ( 5 . 0 ) ;

}
All three of these algorithms execute in 0.0 seconds, for n = 40.
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6. Other Recursive Algorithms

Although Fibonacci applied using binary recursion is not ideal, there is an

alternative which uses simple linear recursion. Here the two previous Fibonacci

numbers are stored as parameters to a recursive function.

int f i b L inea rR ( int a , int b , int n)

{
i f (n <= 2)

return b ;

else i f (n > 2)

return f i b L inea rR (b , a+b , n−1);

}
and is called using the nomenclature:

f i b L inea rR (1 ,1 , n ) ;

Note the two parameters a and b hold two successive Fibonacci numbers. This

linear recursive version takes linear time. For n = 40 binary recursion facilitates

204 668 309 function calls and takes approximately 37 seconds. Linear recursion

conversely takes 39 calls and 0 seconds. Another interesting recursive solution

is that recently posed by Rubio and Pajak [10] who offer up mutual recursion

whereby two functions are defined in terms of each other. The solution is based

on an analysis of Fibonacci’s original rabbit problem and takes the form:

int f i b b a b i e s ( int i )

{
i f ( i == 1)

return 1 ;

else

return f i b a d u l t s ( i −1);

}

int f i b a d u l t s ( int i )

{
i f ( i == 1)

return 0 ;

else

return f i b a d u l t s ( i −1) + f i b b a b i e s ( i −1);

}
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and is called using the nomenclature:

f i b = f i b a d u l t s (n ) + f i b b a b i e s (n ) ;

With n = 40 this form of recursion takes about 120 seconds, so it’s perfor-

mance is actually worse than binary recursion.

7. A Quick Algorithm

Shortt [11] introduced an iterative process for calculating Fibonacci numbers

in 1978. A similar construct was posed by Dijkstra, in the same year [12]. Both

are based on work by Varobyov [13] in 1966. Dijkstra begins his algorithm with

f0 = 0 and f1 = 1 using the following constructs:

fn−1 = f2
n−1 + f2

n
,

f2n = (2fn−1 + fn)fn.

Therefore only fn and fn−1 are required to compute both f2n and f2n−1. As

an example, to calculate f200 , there are only 18 values of f needed. This naturally

results in much less overhead. This problem can itself be solved in three ways:

iteratively, recursively and a blending of recursion and dynamic programming.

If we solve it recursively, for f200 there are 327 calls to the function which, like

binary recursion is largely due to redundant calls. For example, f0 is called 64

times, f1, 100 times. Below is the recursive implementation of the algorithm.

The equations have been decoupled using temporary variables to reduce recursive

calculations.

long long f i b D i j k s t r aR ( int n)

{
long long i , j , tempi , tempj ;

i f (n == 0)

return 0 ;

i f (n == 1)

return 1 ;

i f (n % 2 == 0) { // even

i = (n−1) / 2 ;

j = n / 2 ;

tempi = f i b D i j k s t r aR ( i ) ;
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tempj = f i b D i j k s t r aR ( j ) ;

return (2 ∗ tempi + tempj ) ∗ tempj ;

}
else { // odd

i = n / 2 ;

j = (n+1) / 2 ;

tempi = f i b D i j k s t r aR ( i ) ;

tempj = f i b D i j k s t r aR ( j ) ;

return tempi ∗ tempi + tempj ∗ tempj ;

}
}

With n = 40 this algorithm takes about 0.02 seconds, with 63 recursive calls.

8. A Precise Algorithm

One of the caveats of sequences such as Fibonacci is that they progress in a

rapid fashion. The first five numbers are 1,1,2,3,5, and before you know it you’re at

the 200
th

number, whose value is 280571172992510140037611932413038677189525.

One of the difficulties associated with computing Fibonacci numbers can be at-

tributed to the fact that for any value of fn (n > 17) the number of digits in

fn is at least n

5
and at most n

4
[13]. At some point, many of the classic algo-

rithms will fail, usually as a result of integer overflow. This problem with large

Fibonacci numbers has to do with going beyond the maximum value which can

be stored. On a 32-bit processor, using a C compiler, the maximum value of a

signed long long data type is defined as 9223372036854775807. Now if we try

and calculate f100 we get to f91 and f92 and we get 4660046610375530309 and

7540113804746346429 respectively. Which is fine, however if we now try and cal-

culate f93, we get −6246583658587674878. Which means an overflow has occurred

and the numbers have wrapped around. We could use a C type double of course,

but we will then have problems with the accuracy of calculations. Actually every-

thing works fine until we hit f40 whose result is 102334154.999999991559, instead

of 102334155. Subsequently the errors will just compound. We could also move

to a 64-bit architecture. However none of these solutions solve the basic problem.

There is however another, trickier way. There are challenges with large Fibonacci

numbers, in a similar fashion to those experienced by large factorials, or any se-

quence of numbers. The solution is to treat the numbers as a series of digits next
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to one another. Now, we can store each of these digits as a right-justified series of

elements in an array. Once we have broken the large numbers into numbers into

single digit numbers, we can apply simple addition of adjoining rows in the array.

Consider the example shown in Figure 1. If we add the numbers 610 and 987, the

first step is store the numbers one above the other in a 2D holding array. Now,

starting at the right, we add the 7 and 0 equaling 7, which implies write the 7 in

the row below. Next add 8 + 1 = 9, and finally add 6 + 9 = 15, which implies

write the 5, carry the 1 to the next column. It actually produces numerically

accurate solutions which are easy to output.

0

0

0

0

0

0

1

0

0

5

9

6

9

8

1

7

7

0

0 n − 1

f15

f16

f17















+

Figure 1. Fibonacci “addition” using array elements.

Potentially the limit of this algorithm using a C int array on a 32-bit sys-

tem is a Fibonacci number with 2 147 483 647 elements. The neat thing about

this approach is that is shows students an innovative way of tackling very large

numbers, as well as calculating large Fibonacci numbers accurately.

void f i b P ( int n)

{
// 2D array to ho ld Fibonacc i numbers up to 50 d i g i t s

int f i b [ 2 0 0 ] [ 5 0 ] ;

int i , j , k , r1 , r2 , s1 , car ry = 0 ,sum , temp = 0 , t ;

// Set a l l va lu e s o f the ho ld array to 0

for ( i =0; i <200; i++)

for ( j =0; j <50; j++)

f i b [ i ] [ j ] = 0 ;

// Assign the f i r s t two Fibonacc i numbers

f i b [ 0 ] [ 4 9 ] = 1 ;

f i b [ 1 ] [ 4 9 ] = 1 ;
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// Cycle through F3 to F100

for ( k=2; k<=100; k++) {
r1 = 0 ;

// Find the s t a r t o f number Fn−1

while ( f i b [ k−1] [ r1 ] == 0)

r1 = r1 + 1 ;

// Set the carry−over to zero

car ry = 0 ;

// S t a r t from the end o f Fn−1 moving l e f t

for ( s1 =99; s1>=r1 ; s1=s1−1) {
// Add two s e q u en t i a l d i g i t s

sum = ( f i b [ k−1] [ s1 ] + f i b [ k−2] [ s1 ] ) + car ry ;

// Deal wi th sums>10, c a l c u l a t e the carry over

i f (sum >= 10) {
temp = sum % 10 ;

car ry = (sum − temp )/ 1 0 ;

sum = temp ;

i f ( s1 == r1 )

r1 = r1 − 1 ;

}
else

car ry = 0 ;

// Set the d i g i t in Fn to the va lu e c a l c u l a t e d

f i b [ k ] [ s1 ] = sum ;

}
t = 0 ;

// Prin t out Fn

while ( f i b [ k ] [ t ] == 0)

t = t + 1 ;

p r i n t f ( ”%d ” , k+1);

for ( j=t ; j <50; j++)

p r i n t f ( ”%d” , f i b [ k ] [ j ] ) ;

p r i n t f ( ”\n” ) ;

}
}
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9. Conclusion

The basic algorithm for Fibonacci is fairly straightforward. It is the way

that the algorithm can be extended to incorporate increases in speed, or less

memory that makes Fibonacci attractive as an illustrative example. It can be

introduced early on in CS1 and used throughout the course as a cascading case,

to illustrate new programming constructs and illustrate the differing approaches

to an algorithm. In CS2 it can be used to introduce the notion of algorithm

complexity, allowing a comparison of the various algorithms to gauge running time

and memory usage. In a course on data structures, the precise algorithm could be

extended further to incorporate the use of pointers and linked lists as opposed to

simple arrays. In retrospect, binary recursion offers a concept, but its realization is

limited for large Fibonacci numbers. It should be relegated to an example of when

not to use recursion. There are merits to more non-traditional algorithms. Indeed

there is merit in the entire notion of cascading cases. By familiarizing themselves

with an algorithm, students are able to differentiate facets of algorithm design.

By introducing the various renditions of Fibonacci, students are confronted with a

good example of algorithm diversity, with the most optimal solution depending on

whether the task requires the least time, or storage frugality. It also illuminates

problems with calculating large numbers.
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