
14/1 (2016), 45–62
DOI: 10.5485/TMCS.2016.0415

An interactive animation for learning

sorting algorithms: How students

reduced the number of comparisons

in a sorting algorithm by playing a

didactic game

Ladislav Végh and Veronika Stoffová

Abstract. Learning programming and understanding algorithms is one of the hardest
tasks for novice computer science students. One of the basic algorithms they learn
during the introductory programming and algorithms courses are the sorting algorithms.
Students like learning these and other algorithms by animations and didactic games,
however, these animations are not educationally useful in every case. In this article,
we present our educational sorting game, which can be used to introduce the topic
of sorting algorithms. The didactic game can be used later too, as a demonstrative
tool for explaining the more efficient, quicksort algorithm. We conducted a pedagogical
experiment, in which we examined the process of development of sorting algorithms by
students while they used the mentioned didactic game. The results showed that students
were able to create an algorithm to solve the sorting problem, and they improved its
effectiveness by reducing the number of comparisons in the algorithm. They were also
able to understand the importance of the efficiency of algorithms when we demonstrated
them the quicksort algorithm using the same tool after the experiment.

Key words and phrases: teaching algorithms, game-based animation.

ZDM Subject Classification: U60.

1. Introduction

Programming and understanding algorithms are some of the fundamental

skills that computer science students need to learn. Teaching and learning basic

Copyright c© 2016 by University of Debrecen

46 Ladislav Végh and Veronika Stoffová

algorithms can be easier if the teaching and learning process is enhanced by the

usage of visualizations, animations, and interactive didactic games. Students

prefer learning materials containing animations and games [2], [6], [9], [11].

This assumption was also proved by our survey, where we asked computer

science students at J. Selye University, Komárno, Slovakia during the winter se-

mester (winter term) of the academic year 2014/15 to choose one of the forms of

materials they prefer for learning a new algorithm. The options were as follows:

• Learning material that contains animation of an algorithm; e.g. a web page

with interactive animation or YouTube video.

• Learning materials with static images, e.g. a web page or book that contains

series of images representing the key steps of an algorithm.

• Learning materials with textual explanations, e.g. a web page or book that

contains a detailed description of the steps of an algorithm.

56 students were involved in the questionnaire investigation. The results

showed that significantly more students (85.7%) preferred to use learning mate-

rials containing animations than learning materials containing images or textual

explanations, χ2(2, N=56) = 70.107, p < 0.0005. Only 12.5% of students pre-

ferred static images, and only 1.8% choose textual explanation.

However, previous studies in the field of using animations in education showed

that they are not educationally effective in every case [6], [7], [8]. In spite of these

results, using animations in education can be in most of the situation motivating

for students, and they can help students to concentrate on the main steps of the

algorithm. This slight help can be especially important in the modern, media-

rich world, where students get used to distractions by advertisements, images,

and videos in the media [21], [5]. After the mixed results, researchers started to

investigate further, in which cases are animations and visualizations effective in

education. Many previous research works suggest that the interactivity is impor-

tant in educational animations, in some situations even more, than the graphical

representation of the algorithm [6], [8], [5], [15], [14], [17], [16]. Well designed and

interactive animations can even reduce the high dropout at universities [18].

We collected some of the recommendations related to the graphical design

and interactivity of the algorithm animations for teaching. The following recom-

mendations were used for developing our game-based animation presented in this

paper.

An interactive animation for learning sorting algorithms 47

• Because algorithms use abstract concepts, it is important to select the right

model. The model usually represents the data structure used in the al-

gorithm [3], [4]. Figure 1 shows some of the possible representations of

the one-dimensional array. They can be represented by the heights of the

columns, brights of the ball, or by the numbers on the playing cards [19].

Figure 1. Different visual representations of the one-dimensional array

• The animated algorithm should be represented on a small data set, usually

on 6-8 elements [4].

• The animation should contain explanations of visualized processes. The ex-

planations can convey the information in the textual form or voice. When

the textual form is used, it is important to give enough time for students

to read the explanations, because according to the cognitive theory of the

multimedia learning educants can not concentrate on the reading of the text

and understanding of the animation at the same time [12]. The explanation

does not necessarily need to be part of the animation, for example, it can be

shown right above the animation on a web page or in an electronic textbook,

or the teacher can explain the animation in the classroom [4].

48 Ladislav Végh and Veronika Stoffová

• The sound effects and the colors of the objects should carry information too

[4] - e.g. in a sorting algorithm, the sorted part of the array might have a

green color while the unsorted part of the array red color.

• The control of the animation should be flexible. This can be simply reached by

adding buttons to stop/play the animation, step the algorithm forward/back-

ward [14], [4], [13]. It is better to play the animation in small logical parts

than to play the whole animation continuously. When the animation stops

after each step, students have time to think about the visualized processes

[6], [12].

• Animations should be entertaining. Adding game elements into the anima-

tions motivates students and enhances their critical thinking [15].

One of the main topics during the introductory programming and algorithms

courses are sorting algorithms, which can be taught by plenty of methods. At pri-

mary school, experimenting with real-life objects of different weight may facilitate

students’ understanding of the sorting algorithms [1]. Dance, music, rhythm and

role-playing may also be used to learn the sorting algorithms, involving the whole

body and multiple senses into the learning process [10]. Sorting algorithms may

also be taught and explained by interactive animations. For novice programmers,

it is better to use simple visualizations with fewer details. Later, animations

which display all the steps seem to be adequate for understanding the algorithms

more deeply [6], [1].

Simple exchange sort is probably the first algorithm which students learn.

Usually this algorithm is followed by other sorting algorithms with time com-

plexity O(n2), like selection sort, insertion sort, and bubblesort. Finally, stu-

dents learn sorting algorithms with time complexity O(n.log2n), like quicksort

and mergesort.

In the main part of this paper, we deal with some of these sorting algorithms

in education, especially with the original and the improved versions of the bub-

blesort, and quicksort algorithm.

2. Materials and methods

In this section, we present our interactive box-sorting animation - an online

didactic game (http://anim.ide.sk/sortingboxes.php) - which can be used

to introduce the topic of the sorting algorithms, and demonstrate the main steps

of the quicksort algorithm. Using this didactic game we conducted a pedagogical

An interactive animation for learning sorting algorithms 49

experiment. Our goal was to figure out if first-year computer science students

with no previous knowledge about the efficiency of sorting algorithms can reduce

the number of comparisons in the algorithms, which they developed on their own.

As a model, we have chosen a group of boxes without labels or any other

markers (see Figure 2: (a)). Students have to sort these boxes from the lighter

box to the heavier, but they can compare only two boxes at the same time,

similarly as a sorting algorithm compares only two elements of the array at the

same time. An equal-arm scale is available in the game to compare these boxes.

Figure 2. (a) Sorting boxes by their weight and (b) Possibility of going
through the steps of animation after an unsuccessful try

The task of game is successfully solved, when students put every box to a

corresponding hook. However, if they put a heavier box on a hook that cannot

carry it, the hook will break, and the game will end unsuccessfully (see Figure 2:

(b)). In this case, the weights of boxes and a control panel are shown. Using the

control panel student can go through the whole animation and figure out where

they made the mistake.

The simple didactic game has three levels. The first level contains only three

boxes; during this easy level, students can get familiar with the game and its

goal. The second, medium level contains five boxes; during this level, students

start developing their sorting algorithms. The final, third level contains seven

boxes; during this level, students can improve and verify their sorting algorithms

on more elements. After solving all three levels, a short statistics is shown for

students, in which they can see how many comparisons they made and how many

of them were redundant. The latest ones are e.g. when they compared the same

boxes more times. Another unnecessary comparison is when the place of the box

50 Ladislav Végh and Veronika Stoffová

in the sorted order can be figured out from other comparisons. E.g. if box A is

lighter than box B, and box B is lighter than box C, then it is logically deducible

that box A is also lighter than box C, so comparing box A with C is unnecessary.

The didactic game was created in Adobe Flash CS5 using Actionscript 3.0

scripting language. The game can be easily embedded into HTML pages, e.g.

into electronic textbooks. Furthermore, we included two features for research

purposes into the application:

• To minimize the possibility of solving the didactic game by luck, we created

a specific algorithm. The weights of the boxes are not generated at the

beginning of the game as someone would expect, but they are generating

gradually during the game as the user compares the boxes. If the user does

not make all the necessary comparisons, the algorithm will generate the worst

case, and the game ends unsuccessfully. This algorithm was explained in

details in the publication [20].

• Because we wanted to examine students’ solutions, we saved the number

of comparisons and the number of redundant comparisons into a MySQL

database. On the web page, an ID number, which was different for every user,

was shown under the game. During the experiment, we asked our students

to write down this number on the questionnaire instead of their name. Thus,

the questionnaire was anonymous, and we were able to connect the answers

from the questionnaire to the saved steps of the solutions in the database and

filter them.

The pedagogical experiment was conducted during the academic year 2014/15

and 2015/16. Our goal was to figure out if students can develop their sorting al-

gorithms and improve them by reducing the number of comparisons. Therefore,

we encouraged our students to find an algorithm, where the number of redundant

comparisons is zero. This kind of algorithm is, e.g. the quicksort, or mergesort,

where the time complexity is O(n.log2n). However, the insertion sort algorithm

with time complexity O(n2) also does not make any redundant comparisons, and

the bubblesort algorithm can also be improved by reducing the number of com-

parisons, as we will see in students’ solutions.

In the pedagogical experiment were involved 99 first-year computer science

students from J. Selye University in Komárno, Slovakia, (50 students in 2014/15

and 49 students in 2015/16). They were asked to play the didactic game and

fill out an anonymous questionnaire during a 1-1.5 hour period. Some of the

students were familiar with basic sorting algorithms, but none of them learned

An interactive animation for learning sorting algorithms 51

about the efficiency of the algorithms, or sorting algorithms with time complexity

O(n.log2n) before the experiment.

3. Results and discussion

During the experiment, every student found a solution to sort the boxes in an

ascending order. As we can see in Figure 3, some of the students sorted the boxes

only with redundant comparisons, but most of the students were able to reduce

the number of unnecessary comparisons during the experiment and solved the

task without redundant comparisons in the end. There were only a few students

who did not make any unnecessary comparison since the beginning until the end

of the experiment.

Figure 3. Percentage of students categorized by the success of solution
for every level during the experiment

Next, we tried to examine if students were able to reduce the number of

redundant comparisons in their successful solutions during the experiment, or

52 Ladislav Végh and Veronika Stoffová

they were even able to reduce them to zero. Table 1 shows the average numbers

and medians of unnecessary comparisons in students’ first six successful solutions

for the first and second level of the didactic game.

Table 1. Statistics of numbers of redundant comparisons in students’
first six successful solutions for the first and second level of the game

Level 1

(sorting 3 boxes)

Level 2

(sorting 5 boxes)

Mean
Std.

Dev.
Mdn. N Mean

Std.

Dev.
Mdn. N

Attempt1 0.62 1.251 0 99 2.52 2.894 1 99

Attempt2 0.16 0.397 0 99 1.80 2.134 1 98

Attempt3 0.16 0.467 0 99 1.33 1.706 0 97

Attempt4 0.06 0.246 0 94 1.05 1.615 0 91

Attempt5 0.11 0.313 0 83 0.70 1.174 0 80

Attempt6 0.05 0.229 0 73 0.84 1.542 0 68

Figure 4 shows the mean numbers of unnecessary comparisons in students’

successful solutions during the first level (sorting three boxes) and second level

(sorting five boxes). The figure shows some decreases during the observed periods.

Figure 4. Mean numbers of redundant comparisons in students’ first
six successful solutions during the first and second level of the didactic

game

Table 2 and Figure 5 shows the mean numbers and medians of redundant

comparisons in students’ successful solutions during the third level (sorting seven

boxes). We can recognize more decrease in these graphs, than in the previous two

charts. To determine if the decrease in the numbers of redundant comparisons is

An interactive animation for learning sorting algorithms 53

significant, we were using related-samples Friedman’s two-way analysis of variance

by ranks. We decided to use this test instead of one-way repeated measures

ANOVA, because the assumption of normality was violated.

Table 2. Statistics of numbers of redundant comparisons in students’
first six successful solutions for the third level of the game

Level 3

(sorting 7 boxes)

Mean
Std.

Dev.
Mdn. N

Attempt1 6.87 5.452 7 99

Attempt2 4.80 4.815 3 97

Attempt3 3.89 4.503 2 92

Attempt4 3.48 4.435 2 83

Attempt5 2.92 4.574 0 72

Attempt6 2.41 3.836 1 61

Figure 5. Mean numbers and medians of redundant comparisons in
students’ first six successful solutions during the third level of the
didactic game

Friedman test showed that the number of redundant comparisons in students’

first six successful solutions for the third level was statistically significantly dif-

ferent at different attempts during the pedagogical experiment, χ2(5) = 35.560,

p < 0.0005. Pairwise comparisons (SPSS Statistics, 2013) with Bonferroni cor-

rection for multiple comparisons (see Table 3) revealed statistically significant

differences in the number of redundant comparisons between the 1st attempt

(Mdn = 7) and 5th attempt (Mdn = 0) (p = 0.001), 1st attempt (Mdn = 7) and

54 Ladislav Végh and Veronika Stoffová

6th attempt (Mdn = 1) (p < 0.0005), 2nd attempt (Mdn = 3) and 5th attempt

(Mdn = 0) (p = 0.027), and 2nd attempt (Mdn = 3) and 6th attempt (Mdn = 1)

(p = 0.004).

Table 3. The results of the post hoc tests for third level (sorting seven boxes)

Test

Statistics

Std.

Error

Std. Test

Statistics
Sig. Adj. Sig.

Pair 1 6th - 5th attempt 0.180 0.339 0.532 0.594 1.000

Pair 2 6th - 4th attempt 0.598 0.339 1.766 0.077 1.000

Pair 3 6th - 3rd attempt 0.852 0.339 2.516 0.012 0.178

Pair 4 6th - 2nd attempt 1.238 0.339 3.654 0.000 0.004

Pair 5 6th - 1st attempt 1.508 0.339 4.452 0.000 0.000

Pair 6 5th - 4th attempt 0.418 0.339 1.234 0.217 1.000

Pair 7 5th - 3rd attempt 0.672 0.339 1.984 0.047 0.709

Pair 8 5th - 2nd attempt 1.057 0.339 3.121 0.002 0.027

Pair 9 5th - 1st attempt 1.328 0.339 3.920 0.000 0.001

Pair 10 4th - 3rd attempt 0.254 0.339 0.750 0.453 1.000

Pair 11 4th - 2nd attempt 0.639 0.339 1.887 0.059 0.887

Pair 12 4th - 1st attempt 0.910 0.339 2.686 0.007 0.109

Pair 13 3rd - 2nd attempt 0.385 0.339 1.137 0.255 1.000

Pair 14 3rd - 1st attempt 0.656 0.339 1.936 0.053 0.794

Pair 15 2nd - 1st attempt 0.270 0.339 0.798 0.425 1.000

These results prove our interactive animation helped students to develop sort-

ing algorithms and make them more efficient by reducing the number of compar-

isons to the minimum.

We also wanted to know what kind of algorithms students used during the

pedagogical experiment and how they reduced the number of comparisons. For

this reason, we tried to observe the student’s solutions during the experiment and

asked students in the questionnaire to write down the whole process of sorting.

The following videos demonstrate some ideas, how the didactic game can be

completed:

(1) Using bubblesort algorithm: https://youtu.be/47Ikl5wyRMM

During the sorting, we put the boxes on the equal-arm scale one after

the other. After each comparison, we leave the heavier box on the scale, and

we remove the lighter box. We put the removed box on the left free place of

the two neighboring free spots (the heavier would be placed to the right free

An interactive animation for learning sorting algorithms 55

place according to the bubblesort algorithm, but we leave it on the scale for

the next weighing with the next element). Using this algorithm the heaviest

box will remain on the scale in the end. After this, we can repeat the whole

process from the beginning with the remaining boxes.

(2) Using bubblesort with marking: https://youtu.be/YAf1Rgj0z2A

Similar algorithm than the previous one, but when we remove a box from

the scale, we try to pay attention to the results of the previous comparisons. If

the lastly removed box is heavier than the previously removed box, we put it

next to it. If we cannot determine which of the two previously removed boxes

is heavier, we mark the last box by putting it above the previous box, so we

will know that this marked box needs to be compared with other previously

sorted boxes. After finding the heaviest box from all boxes, we do not need

to compare every box again, but we need to find only the right places of

the marked boxes. Even though this algorithm is complicated because of the

marking (grouping); there are not redundant comparisons during the sorting.

(3) Using quicksort algorithm: https://youtu.be/eqO1x4Fj5RM

In this method, we use the quicksort algorithm, so we will choose one box

and compare it with every other box. If the compared box is lighter than the

selected box, we put the compared box into the left group, otherwise to the

right group. After comparing the selected box with every other box, we will

find the right place of the selected box, and we will repeat the whole process

with both (left and right) groups.

(4) Using mergesort algorithm: https://youtu.be/zLpZWiYT7Fo

In this method, we use the mergesort algorithm. First, we create groups

of 2 boxes. Next, we merge these groups, and we create groups of 4 boxes.

Lastly, we create a group of 8 boxes by merging (in the didactic game only

seven boxes).

(5) Merging groups of 3-4 boxes: https://youtu.be/FWdqbmSs1kw

First, we create sorted groups of 3 elements without redundant compar-

isons. Next, we insert the remaining element into one of the groups. Finally,

we merge the two sorted groups.

According to our observations during the pedagogical experiment, most of

the students started to sort the boxes by using the first method (bubblesort), but

they quickly figured out that there are too many redundant comparisons, which

they can logically deduct from the previous comparisons. After this, they tried

56 Ladislav Végh and Veronika Stoffová

to minimize the number of comparisons in some way, so they come to the second

method of sorting (bubblesort with marking).

There were some students, who solved the problem in the end with the third

method (quicksort) or fifth method (merging groups of 3-4 boxes), but none of

the students have tried the fourth method (mergesort).

Students described in the questionnaire the algorithm they used. After re-

viewing these descriptions, we assign to every answer one of the above-mentioned

methods. From the experiment we can see, that the significant majority of the

students used the second method to sort the boxes (bubblesort with marking):

χ2(3, N=70) = 25.657, p < 0.0005 (see Figure 6).

Figure 6. Sorting algorithms used by the students

It is important to mention that the bubblesort algorithm improved by the

students makes fewer comparisons than the original bubblesort or the well-known

improved bubblesort algorithm, and it does not contain any redundant comparison

(which can be logically deduced from the previous comparisons). However, the

number of swaps was not reduced, so practically it makes the same number of

exchanges than the original bubblesort algorithm. These data are illustrated in

the following example (see Table 4), where we sorted 10000 random numbers by

using different versions of the bubblesort algorithm and the quicksort algorithm.

The questionnaire also contained six after-game assignments, which are in

the appendix of this paper. Using these assignments we wanted to determine if

students can solve these logical tasks, which are closely related to the identifica-

tion of the redundant comparisons. Most of the students were able to solve the

assignments after the experiment; the results are shown in Table 5.

An interactive animation for learning sorting algorithms 57

Table 4. Sorting 10000 random numbers by different algorithms

number of comparisons number of exchanges

original bubblesort 49995000 24837078

improved bubblesort 49940418 24837078

students’ improved bubblesort 24847071 24837078

quicksort 105265 33469

Table 5. Efficiency of students

1st

assignment

2nd

assignment

3rd

assignment

4th

assignment

5th

assignment

6th

assignment

96% 95% 88% 96% 84% 75%

An interesting future research would be to determine that the didactic game

in what extent helped to solve these types of logical tasks.

Finally, we wanted to know students’ opinion about the educational game, so

we asked them to rate the clarity, user-friendliness, graphical design, and give us

an overall rating of the didactic tool by using a 10-point Likert scale. The results

are summarized in Table 6.

Table 6. Students’ ratings on the 10-point Likert scale

Clarity User-friendliness Graphical design Overall rating

Mean: 8.53 9.49 9.44 9.14

Std. Dev.: 1.60 1.10 1.19 1.31

Students liked our didactic game, and they gave it high ratings. Some of

the students also mentioned that they would like to learn more algorithms by

animations and educational games.

4. Conclusions and plans

The results showed that our didactic game helped students to develop their

sorting algorithms. They were also able to reduce the number of comparisons in

algorithms significantly. However, most of them only improved the bubblesort al-

gorithm, so they were not able to recognize (figure out) a more efficient algorithm,

like quicksort or mergesort.

58 Ladislav Végh and Veronika Stoffová

Students were also able to solve logical tasks related to the redundant com-

parisons after experimenting with the didactic tool, and rated the game with high

scores.

During the education we recommend to use this tool before the sorting algo-

rithms topic, as we did in our pedagogical experiment; but it can be also used as

a demonstrative tool for explaining the quicksort algorithm. Students can easier

understand the importance of effectiveness in algorithms when they first try to

develop their algorithms by experimenting with the didactic tool, and later we

show them the quicksort algorithm by using the same tool. Students who were

not able to develop the quicksort algorithm during the pedagogical experiment

were amazed how easily and quickly the boxes can be sorted when we showed

them the quicksort algorithm later.

This pedagogical experiment also proves that interactive animations and di-

dactic games have its place in education, and they can be used to support the

learning process. This fact encouraged us to create an open online portal of algo-

rithm animations and visualizations (www.algoanim.ide.sk). We have started to

collect and develop more interactive animations and didactic games for teaching

and learning algorithms, which will be available for everyone on this portal.

References

[1] P. Bernát, The methods and goals of teaching sorting algorithms in public educa-
tion, Acta Didactica Napocensia 7, no. 2 (2014), 10.

[2] M. D. Byrne, R. Catrambone and J. T. Stasko, Evaluating animations as student
aids in learning computer algorithms, Computers & Education 33, no. 4 (1999),
253–278.

[3] M. Esponda-Arguero, Techniques for visualizing data structures in algorithmic an-
imations, Information Visualization 9, no. 1 (2010), 31–46.

[4] R. Fleischer and L. Kucera, Algorithm animation for teaching, Software Visualiza-

tion 2269 (2002), 113–128.

[5] S. Grissom, M. F. McNally and T. Naps, Algorithm visualization in CS education:
comparing levels of student engagement, in: Proceedings of the 2003 ACM sympo-

sium on Software visualization, ACM, 2003, 87–94.

[6] S. Hansen, N. H. Narayanan and M. Hegarty, Designing educationally effective
algorithm visualizations, Journal of Visual Languages and Computing 13, no. 3
(2002), 291–317.

[7] C. Hundhausen and S. Douglas, Using visualizations to learn algorithms: Should
students construct their own, or view an expert’s?, 2000 Ieee International Sympo-

sium on Visual Languages, Proceedings (2000), 21–28.

An interactive animation for learning sorting algorithms 59

[8] C. D. Hundhausen, S. A. Douglas and J. T. Stasko, A meta-study of algorithm
visualization effectiveness, Journal of Visual Languages and Computing 13, no. 3
(2002), 259–290.

[9] C. Kann, R. W. Lindeman and R. Heller, Integrating algorithm animation into a
learning environment, Computers & Education 28, no. 4 (1997), 223–228.

[10] Z. Katai and L. Toth, Technologically and artistically enhanced multi-sensory com-
puter-programming education, Teaching and Teacher Education 26, no. 2 (2010),
244–251.

[11] C. Kehoe, J. Stasko and A. Taylor, Rethinking the evaluation of algorithm ani-
mations as learning aids: an observational study, International Journal of Human–

Computer Studies 54, no. 2 (2001), 265–284.

[12] R. E. Mayer, Multimedia Learning, second edition, Cambridge University Press,
New York, USA, 2009.

[13] T. Naps and S. Grissom, The effective use of quicksort visualizations in the class-
room, J. Comput. Sci. Coll. 18, no. 1 (2002), 88–96.

[14] T. L. Naps, G. o. Rößling, V. Almstrum, W. Dann, R. Fleischer, Ch. Hundhausen,
A. Korhonen, L. Malmi, M. McNally, S. Rodger and J. Á Velázquez-Iturbide, Ex-
ploring the role of visualization and engagement in computer science education,
SIGCSE Bull. 35, no. 2 (2002), 131–152.

[15] A. Rudder, M. Bernard and S. Mohammed, Teaching programming using visual-
ization, Proceedings of the Sixth IASTED International Conference on Web-Based

Education (2007), 487–492.

[16] V. Stoffa, Modelling and simulation as a recognising method in the education,
Educational Media International 41, no. 1 (2004), 51–58.

[17] V. Stoffa, Az animáció szerepe az elektronikus tankönyvekben, Információs társa-

dalom VIII, no. 3 (2008), 113–125.

[18] J. Urquiza-Fuentes and J. A. Velazquez-Iturbide, Toward the effective use of educa-
tional program animations: The roles of student’s engagement and topic complexity,
Computers & Education 67 (2013), 178–192.

[19] L. Végh, Animations in Teaching Algorithms and Programming (Animácie vo
vyučovańı algoritmov a programovania), in: Nové technologie ve vzděláváńı, (J.
Dostál, ed.), Palacký University, Olomouc, CZ, 2011, 47–51.

[20] L. Végh, From bubblesort to quicksort with playing a game (Hravou formou od
bublinkového triedenia po rýchle triedenie), in: XXIX. International Colloquium

on the Management of Educational Process, (J. Neubauer and E. Hájková, eds.),
University of Defence, Brno, CZ, 2011, 539–549.

[21] J. R. Young, Homework? What Homework? Students seem to be spending less time
studying than they used to, The Chronicle of Higher Education 49, no. 15 (2002),
A35–A37.

60 Ladislav Végh and Veronika Stoffová

Appendix - after game assignments

(1) What would be the order of boxes if we had made the following comparisons?

� A < C < B

� A < B < C

� B < A < C

� other order: ..

� there were not enough comparisons to decide the order of boxes

(2) What would be the order of boxes if we had made the following comparisons?

� B < C < A

� A < C < B

� B < A < C

� other order: ..

� there were not enough comparisons to decide the order of boxes

(3) What would be the order of boxes if we had made the following comparisons?

� A < B < C

� C < A < B

� A < C < B

� other order: ..

� there were not enough comparisons to decide the order of boxes

An interactive animation for learning sorting algorithms 61

(4) What would be the order of boxes if we had made the following comparisons?

� A < B < C < D

� B < C < A < D

� A < B < D < C

� other order: ..

� there were not enough comparisons to decide the order of boxes

(5) What would be the order of boxes if we had made the following comparisons?

� A < B < C < D

� A < D < B < C

� A < B < D < C

� other order: ..

� there were not enough comparisons to decide the order of boxes

(6) What would be the order of boxes if we had made the following comparisons?

� A < B < C < D

� A < C < B < D

� A < C < D < B

� other order: ..

� there were not enough comparisons to decide the order of boxes

62 L. Végh, V. Stoffová : An interactive animation for learning sorting algorithms

LADISLAV VÉGH

J. SELYE UNIVERSITY

KOMÁRNO, SLOVAKIA

E-mail: veghl@ujs.sk

VERONIKA STOFFOVÁ

TRNAVA UNIVERSITY

TRNAVA, SLOVAKIA

E-mail: veronika.stoffova@truni.sk

(Received February, 2016)

