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Abstract. According to the Hungarian National Curriculum the proof of the irrationality
of

√
2 is considered in grade 10. We analyze the standard proofs from the textbooks

and give some mathematical arguments that those reasonings are neither appropriate
nor sufficient. We suggest that the proof should involve the fundamental theorem of
arithmetic.
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1. Introduction

This paper is a sequel to [5], where the presentation of basic notions of number

theory in Hungarian textboooks, like fundamental theorem of artihmetic, greatest

common divisor (gcd), least common multiple were analyzed. In this paper we

investigate into the proofs concerning number theory appearing in highschool

textbooks. The almost obligatory one is the proof of the irrationality of
√
2. The

number
√
2 exists and irrational. In the inaguaral issue of this journal a paper

was published about the existence of
√
2 [7]. In this paper we make a point that

although
√
2 is irrational, the proof of this fact is not appropriate to introduce

the notion of proof in highschool or at least not the proof that is presented in
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most books. Most people when asked about the proof of the irrationality of√
2 start by saying “we prove by way of contradiction”. We will argue that the

first sentence should be: “The proof is based on the fundamental theorem of

arithemtic (FTA)”. The role of this proof is multipurpose. This is not only one

of the few proofs covered in highschool, but also the first place where pupils meet

with irrational numbers and the first time when they meet the strategy of proving

by contradiction. The difficulties to understand this latter one is well analyzed

in [15].

The role of proofs in mathematical education was always in the center of

interest of researchers of the area. Among others, argumentation and proof was

the topic of the working group 2 on the Sixth Congress of the European Society

for Research in Mathematics Education, January 28th - February 1st 2009, Lyon

(France). Also, ZDM, Mathematics Education devoted a full issue (Volume 40,

Issue 3, 2008) on Didactical and Epistemological Perspectives on Mathematical

Proof. Many other articles deal with the role of proofs in school mathematics.

For a general account and latter references consult [11], where for example, it is

stated that proofs convey important elements of mathematics such as strategies

and methods, that it is proofs rather than theorems that are the bearers of math-

ematical knowledge. Thus proofs should be the primary focus of mathematical

interest. The significance of profs for mathematics education in general and the

teaching of proof is analyzed, as well. Meanwhile, constantly present, there are

two competing views about mathematics, namely that it is a system of math-

ematical names, rules, procedures, justifications to learn, and a useful thing to

explore that helps to the development of creative thinking [17]. The role of proofs

and arguments is formulated in the Hungarian National Core Curriculum (NAT,

1995) [20] in a similar flavour.

We find the following in the shortened version of the Hungarian National

Core Curriculum (NAT, 1995):

“Necessary knowledge, skills and attitudes

Essential knowledge in mathematics include the progressive knowledge of nu-

meracy, measures and structures, basic operations and fundamental mathematical

presentations, mathematical notions, correlations and concepts and understand-

ing the questions to which mathematics can give answers.

Having acquired mathematical competence, the individual has the skills to

apply basic mathematical principles and processes in the context of knowledge

acquisition and problem solving in everyday situations, at home and work. An

individual should be able to follow and interpret a chain of arguments, to explain
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results with the means of mathematics, to understand mathematical reasoning, to

communicate in the language of mathematics and to use appropriate resources.

A positive attitude in the field of mathematics rests on the respect for truth

and the disposition to seek logical reasons and their validity.”

One third of this short version is about proofs and about understanding

proofs. Looking at the detailed description, one can see that understanding cer-

tain concepts and skills dependent on them reappear in the objectives at the

end of the grades 4, 6, 8 and 10, adjusted to fit the appropriate level of stu-

dents’ age characteristics. Students build a system of mathematical arguments

and knowledge (concepts, procedures, theorems, justifications) during a mathe-

matical activity. Mathematics is a useful thing to explore that helps to develope

creative thinking. It is pointed out in [17] and [1] that there are thoughts among

the precedents of all proofs at school that rely on authority, repetition, or accep-

tence based on concrete examples, and as such, are only locally arranged. The

students usually do not have the background system for the studied statement.

So the learnability, the details, the structure and arguments of proofs must fit

into the responsibility of the textbook author and the teacher. Incomplete, mis-

leading or even flawed reasonings just work against achieving the overall objective

of teaching mathematics.

In highschool the NAT requires from pupils to recognize arguments in proofs

and find and understand the key steps of the proofs.

We examine the highschool textbook proofs from these aspects. Missing

arguments, incomplete reasonings will be found at several places. The leading

question of our research is whether or not the proofs of the irrationailty of
√
2 are

satisfiyng those conditions described above. We claim that ALL these proofs lack

the minimum appropriate mathematical precision. We made a case study to see

if people can recall or reconstruct this proof. We asked people who are supposed

to remember the proof: math students at the university and high school math

teachers. Some details and conclusions of this case study will be mentioned in

Section 3. We do not present the whole study, it is not the main topic of our paper.

The main goal is to show that these proofs are incomplete. Mostly because an

average pupil is not able to fill in the gaps.

Concerning missing arguments or incomplete proofs, according to Lakatos [14]

a reasoning left to the reader is far too delicate instructional element for approval.

Often very careful deliberation, deep consideration are necessary in order to make

students benefit from the use of statements like “obviously”, “the same way”,

“similarly”, “analogously” in making independent reasonings and not simply train
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them to cover up the uncomfortable parts of a proof. To achieve our goal the

phylosophical concept of Lakatos [14] will be applied: no theorem of informal

mathematics is final or perfect. This means that one should not think that a

theorem is ultimately true, only that no counterexample has yet been found.

Once a counterexample, that is, an entity contradicting/not explained by the

theorem is found, we adjust the theorem, possibly extending the domain of its

validity. This is a continuous way knowledge accumulates, through the logic and

process of proofs and refutations. We extend this idea by the steps presented in

Appendix 1 of [14]:

(1) We consider the statement as a primitve conjecture.

(2) Next we present the proof.

(3) Then, we give global counterexamples.

(4) Then, we give local counterexamples to the steps of the proof

(5) We find the “guilty” steps

Then we correct the proof. Following Lakatos’ spirit, we do not claim that we

finalize all possibilities of handling
√
2. There will be asked an unasked questions

left open. We are sure that the reader himself will find such questions and develop

further ideas towards this simple proof. Our counterexamples and “guilty steps”

are of mathematical flavour. We concentrate on the number theoretical–ring

theoretical side of the proof. We shall show structures where analogous statements

do not hold or analogous arguments do not work. This points out that in those

cases extra reasonings are required to avoid confusion or incompleteness.

2. Proofs in print

Now, we turn our attention to the proof of the irrationality of
√
2. We start

by sampling textbooks. Investigaton of text book proof is not a new idea, for

example a Sweedish analysis can be found in [16]. We looked up all textbooks in

use in Hungarian high schools since 2001. All nine textbooks contained a proof

of the irrationality of
√
2 except [4]. We shall refer to the other books later,

when the proofs are presented. Although textbooks are goverment approved in

Hungary, the NAT 95 gives some freedom on the order of topics covered. This is

why the proof is contained sometimes in the grade 9 and sometimes in the grade

10 books.
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Proof 2.1. [13] We prove by way of contradiction: Let us assume that√
2 = p

q
where p, q ∈ Z+ and they are relatively prime: (p; q) = 1

√
2 =

p

q
,

2 =
p2

q2
,

2q2 =p2.

⇓
2|p2 ⇒ 2|p ⇒ 4|p2,

if 4|p2 ⇒ 2|q2 ⇒ 2|q.

We obtained that that p and q are both even. This contradicts the assumption

that they are relatively prime, so the statement is true.

This proof is lacking arguments. The setup, the context and the initial con-

dition are explained in words, and after that you only have a series of symbols.

At the second part of the verification words are replaced by the ⇒ symbol. This

symbol (by the agreement of the mathematical community) means that the sen-

tence before implies the sentence after. First, we do not use this symbol in written,

formal proofs. Secondly, even if we use, we mostly use it for (obvious) deductions.

Example 2.2. For example consider the following sequence of arguments:

x > 10 ⇒ x > 0 ⇒ x has a square root.

In this a sequence the first implication comes from 10 ≥ 0 and the transitivity of

>. The second implication comes from the definition of the square root function.

The first argument is so basic, well-known and widely accepted, that it does not

require additional explanation. The second one is less trivial for those who have

just defined the notion of squareroot, but x > 0 ⇒ x has a square root is a part

of its definition. Moreover, both implications are true if we replace 10 by any

number greater than 0. Hence the arguments are true in a very general sense.

We shall see later in the paper that the arguments of Proof 2.1 are not of this

kind.

Proof 2.3. [10] Let us assume that
√
2 is rational. It means that it can be

written as the ratio of two integers p and q,
√
2 = p

q
where we may assume that p
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and q have no common factors. (If there are any common factors we cancel them

in the numerator and denominator.) Squaring both sides gives 2 = p2

q2
which

implies 2q2 = p2 Thus 2|p2. The only way this can be true is that 2|p. However,

in this case actually p2 is divisible by 4. Hence 2|q2 and therefore 2|q. So p and q

are both divisible by 2 which is a contradiction to our assumption that they have

no common factors. The square root of 2 cannot be rational! �

Almost the same proof shows up in a few other books. In [9, 6] The only way

this can be true is replaced by This implies that

And a proof from [2, 3, 12]:

Proof 2.4. Let us assume that
√
2 is rational. It means that it can be

written as the ratio of two integers p and q,
√
2 = p

q
where we may assume that

p and q have no common factors. (If there are any common factors we cancel

them in the numerator and denominator.) Squaring both sides gives 2 = p2

q2

which implies 2q2 = p2. 2q2 is even, hence p itself is even, because only an even

number’s square can be even. But then p2 is actually divisible by 4. Hence q2 and

therefore q must be even. So p and q are both even which is a contradiction to

our assumption that they have no common factors. The square root of 2 cannot

be rational! �

We give two evaluations, two different evaluations of Proof 2.3 and 2.4.

Evaluation 1. Proof 2.3. This proof is nothing else, but Proof 2.1 planted

into words. Each ⇒ is replaced by some text that has no information on the on-

going mathematics. Hence, it is equivalent to Proof 2.1. Or evenmore dangerous,

because words are more convincing than arrows. The uncertain reader, who is

unexperienced, who is not safe with proofs yet, might easily think that he is the

(only) one who does not understand the proof and accept it without interpreting

it for himself. Or, he could simply believe that this is what a proof looks like.

Then, as he does not see the point, he may join the (large) group of people for

whom mathematics is mystery. Being the first and one of the very few proofs in

highschool, the irrationality of
√
2 deserves more care.

Evaluation 2. Proof 2.4. One could argue as follows. Being even is so

wellknown, widely accepted notion as being integer. Everybody knows about

even and odd numbers. Everybody sees that if p2 is even then p is even. So this

proof is correct, and if you understand the difference between even and odd, then

you understand this proof, as well.
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Which of the above two evaluations is correct? If we agree, that Proof 2.1 is

not a proof, then Evaluation 1. is correct, because a proof is recognized (among

others) by the sequence of deductions, and the two proofs do not differ in this

sense. The validity of Evaluation 2. is more questionable. The difference between

Proofs 2.1 and 2.3 is that we replaced the formula 2|n by the expression n is even.

The two things are equivalent, the definition of beeing even is being divisible by

2. Does it make a difference? We leave this question open for a while.

We arrived at a set of correct proofs. The first one has an even-odd type

argument, as Proof 2.4 but with more explanations. This is just an extra half

sentence, but it makes the picture clear.

Proof 2.5. Let us suppose that
√
2 is a rational number. Then we can write

it as
√
2 = a

b
where a, b are integers, and b is not zero. We additionally assume

that this a
b
is simplified to lowest terms, since that can obviously be done with

any fraction. Notice that in order for a
b
to be in simplest terms, both of a and

b cannot be even. One or both must be odd. Otherwise, we could simplify a
b

further. From the equality
√
2 = a

b
it follows that 2 = a2

b2
, which means that

2b2 = a2. So the square of a is an even number since it is two times something.

From this we know that a itself is also even, because it can’t be odd; if a itself

was odd, then a · a would be odd, too. Odd number times odd number is always

odd. If a is an even then a is 2 times some other integer. In symbols, a = 2k,

where k is this other number. If we substitute a = 2k into the original equation

2 = p2

q2
, this is what we get:

2 =
(2k)2

b2

2 =
4k2

b2

2b2 =4k2

b2 =2k2

This means that b2 is even, from which follows again that b itself is even. And

that is a contradiction. Therefore
√
2 cannot be rational.

This last proof adds a single extra remark to the earlier proofs: odd times

odd is odd. We agree, that this statement is true. We agree that this explanation

is correct. We agree that this proof is using only elementary arguments. We agree

that the notion of even-odd is supposed to be known by every student.
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3. Case study

We made a case-study about how people relate to this proof. We asked

just finishing highschool students, first, second and third year math students at

the university and highschool math teachers. Each of them was asked (without

any preliminary notification) to prove that
√
2 is irrational. We have interviewed

altogether 103 people. Each interview involved writing possibilities (paper, white-

board, etc). We do not give here all details of the case study. At first, it is not the

topic of the paper. Secondly, it would exceed the space limit. We just mention

a few interviews to demonstrate that even the mathematically educated people

have difficulties with this proof.

As a first approach, over 30 students were questioned, mostly randomly se-

lected among the university students of grade 2-4, each of them have finished a

number theory course. Most of them started in the following way:

“We prove by way of contradiction. Let us assume that the statement is not

true. Than
√
2 can be written as the quotient of two integers:

√
2 =

p

q

Then multiplying by q we get

q
√
2 = p

Here 4 students has stopped. What now? Then we gave a hint that you should

omit the squareroot.

Squaring both sides we obtain

2q2 = p2

At this point another 5 students stopped and quitted. They said something like:

I do not remember from here. I am too tired, I cannot continue. Most students

here went back to the first line and added that

(p, q) = 1,

saying that we may assume that the gcd of p and q is 1. Then they said that here

something is even, I remember. . . I do not know, what exactly. Sorry.

Altogether 23 of the first 30 students failed to produce a proof.

At some point we have interviewed a group of five students, and we started

to question them about the parity argument. They recalled that something has

to be done with parity, and slowly, and not so confidently they figured out the
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odd times odd argument. As they have recollected their memories on divisibility,

they proved that odd numbers are of the form 2k + 1 and then that really, odd

times odd is odd by multiplying (2k + 1)(2l + 1).

A former student said that she will go to the school she is teaching at and

discuss it with her colleagues. We copy his letter here without any changes:

Dear Professor,

I was talking to X.Y., a math teacher, who finished her studies as a math

major a few years ago and we gave up the proof of the irrationality of squareroot

2 at the point, where the parity argument came. The notion of prime, irreducible

came up, and the the notion of even numbers, of which we are not sure about any

more. I asked her about what an even number is (as you instructed me to do so

in this case), and first she said that those are the numbers ending in 0,2,4,6,8 .

Then she said the divisibility by 2, end came the FTA. But in case of
√
2 if q = 1

then
√
2 = p which is an integer. So, is the squareroot of 2 even? It is scary to

think about it. Y. said that we should rather stay at the proof, where we mesure

the side of a square to its diagonal :-). Tomorrow I will talk to the other math

teachers.

Best wishes:

And finally, the 7 succesful participants of our case-study all came up with

the following answer: “Let us assume that
√
2 is the quotient of two integers:

√
2 =

p

q

Then multiplying by q we get

q
√
2 = p

Squaring both sides we obtain

2q2 = p2

Factor both sides into a product of primes. In a square every prime shows up on

an even power (possibly 0) by FTA. Hence 2 is on an odd power on the left side

and on an even power on the right side, a contradiction. Thus
√
2 is not rational.

And another issue is that a few books wrote and a few books imply the

following:

Remark: It can be shown similarly that
√
a is irrational for every integer a,

where a is not a perfect square.
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4. The mathematical background

And now, let us imagine that we believe that the irrationality of
√
a can be

proved similarly. After copying the first few steps we arrive at

aq2 = p2

and we would like to conclude that

a|p.

The bad luck is that this statement is not true in general. For example,

12|62, but 12 ∤ 6.

And if such a statement is not true in general, then first, you need an argument

why it is true for a = 2, secondly, you cannot claim that the proof goes similarly

for other integers a in general.

Let us examine, for which integers a can the above conclusion be drawn:

Theorem 4.1. Let a be an integer. The conclusion

a|n2 implies a|n, (1)

holds if and only if a is squarefree (a product of distinct primes).

Proof 4.2. Let a = p1p2 · . . . · pk, where p1, p2, . . . , pk are distinct primes.

Then a|n2 implies pi|n2. Then, by the prime property, is p is a prime, p|n · n
implies p|n or p|n. Hence pi|n for every 1 ≤ i ≤ k. As the primes pi are distinct,

they are pairwise relatively prime, so the product of these primes divides n. Thus

a|n.
For the other direction let a = pα1

1 pα2

2 · . . . ·αk

k , where α1 > 1. Now, define

n = pα1−1
1 pα2

2 · . . . ·αk

k . We claim that a|n2 and a ∤ n. As a > n, we have a ∤ n.

Now, n2 = p
2(α1−1)
1 p2α2

2 · . . . ·2αk

k . We need to show that the exponent of every

prime in n2 is greater or equal to their exponents in a. As α1 > 1, we have α1 ≥ 2,

and so 2α1 ≥ α1 + 2 and finally 2α1 − 2 ≥ α1. The desired inequality for i > 1

trivially holds. Hence a|n2.

�

Hence, the attempt for a “similar” proof could only work for squarefree num-

bers, and even in that case the proof is very complicated. Now, let us turn our
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attention to the “copiability” of Proof 2.5. There, the argument says that even

times even is even and odd times odd is odd. How could it be translated for a

general integer a, as suggested by the authors? Well, saying even means divisible

by 2, and being odd means not divisible by 2. Hence, the parity argument can

be reformulated in the following way:

If a ∤ b and a ∤ c, then a ∤ bc.

Or, the contrapositive statement

If a | bc then a | b or a | c.
This is exactly the prime-property. In higher mathematics this IS the definition

of a prime. This propety does nor hold for non-primes, for example,

6 ∤ 4 and 6 ∤ 15, but 6|4 · 15 = 60.

In highschool the prime property is not mentioned, or, if they mention it,

then it is a consequence of the fundamental theorem of arithmetic. Although the

proof is not difficult, without proving the prime property, the generalisation of

Proof 2.5 cannot be complete. Pupils in general may easily have difficulties with

the notion of prime or irreducible numbers [18, 19]

Theorem 4.3. If p is a prime and p|ab then either p|a or p|b.

Proof 4.4. By the fundamental theorem of arithmetic a and b can be written

as a product of primes, a = p1p2 · . . . · pk and b = q1q2 · . . . · qt. As p|ab, there is a

k ∈ Z such that ab = pk. Now, again by the fundamental theorem of arithmetic

k can be written as a product of primes, k = r1r2 · . . . · rs. Now,

ab = p1p2 · . . . · pkq1q2 · . . . · qt = pr1r2 · . . . · rs

This is two factorisation of ab into a product of primes. By the uniqueness of the

factorisation of ab, the prime p occurs on the left side, as well. Hence p has to be

equal to pi or some qj for some i or j. Thus either p|a or p|b �

5. To prove or not to prove

We arrived at the point, where we can look at the validity, essence, key

steps and generalizability of the above proofs of Section 2. The most dangerous

proof seems to be Proof 2.1, because it contains no arguments, only arrows of

implications. However, Proof 2.3 is worse, because it makes an impression that

explains the steps. Neither Proof 2.1 nor Proof 2.3 should be allowed to appear



150 P. Csányi, K. Fábián, Cs. Szabó, Zs. Szabó, É. Vásárhelyi

in print. The “this can only happen if” argument is not an argument in its own.

It needs, it requires, it refers to, that there is a short, brief, understandable

explanation. This is a typical place for the responsibility of authors and teachers.

This is the uncomfortable place where you would need reasoning, an unconvinient

reasoning, maybe cutting the rithm of the proof, but it is needed. But in all of

these books the proof is omitted. It suggests that agitating expalantions are

enough to have a statement proven. We might risk the claim that the ones who

wrote these proof do not follow the spirit of proofs described in Section 1 by the

National Core Curriculum.

The said news is that all those implications in the proofs are true. Why is

it sad news? Because the implication drawn in that argument is true. So, it is

not easy to point out where the mistake is in the proof. Because every step is

true. On the other hand it is kind of an unwritten agreement what steps do we

accept as steps of a proof. And a step is different in elementary school, different at

highschool and different at the university, at college level. Thorough readers and

highschool teachers may say that those arguments are not necessary to present in

highschool, these notions are either not necessary, or the proofs are more intuitive

in highschool, and we accept those arguments. It is hard to argue against this

concept in general. Now, for thre proof of the irrationality of
√
2 this is not

the case. The case study of Section 3 clearly shows that those proofs and those

arguments are lost for the eternity.

In the Introduction we promised to argue only mathematically, hence we have

to return to the 5 steps of Lakatos. Steps 4 and 5 could come to our help. Let

us consider the two most well-known structures as places for counterexamples in

number theory.

G = {a+ bi | a, b ∈ Z} and J = Z[
√
−5] = {a+ b

√
−5 | a, b ∈ Z}

The structure G is called the ring of Gaussian-integers. In G the number 2 is not

a prime: 2 = (1 + i)(1− i) = −i(1 + i)2. And, so, for example

2|(3 + i)2 = 2(4 + 3i) but 2 ∤ 3 + i in G,

even worse, 2|(1 + i)2 = 2i. One might say that, sure, you are right, but we are

talking about a prime in the proofs, and 2 is not a prime in G. And this is the

first point, where we can argue, that Proof 2.5 is not correct, because it does not

seem to use the primness of 2. Before we believe that the proof works at least for

primes, observe that 2 and 1 +
√
−5 are both primes in J . Thus

2 ∤ 1 +
√
−5 but 2|(1 +

√
−5)2 = −4 + 2

√
−5 = 2(−2 +

√
−5) in J .
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The number 2 divides the square of an other prime. What happened here, exactly?

In higher mathematics we showed counterexamples to all those implications that

are used to conclude that both the numerator and the denominator of the fraction

are even.

As an ultimate attack to our reasoning could be that well,
√
2 is never a

fraction of two elements in any ring. So, there must be a proof not using the

fundamental theorem of arithmetic. A counterexample to this is the ring Z[
√
8].

There,
√
2 =

√

8
2 , hence “rational”. In Table 1. we have summarized our coun-

terexamples to the several possible arguments.

Table 1

Guilty argument ring Counterexample

n | a · b ⇒ n | a or n | b Z 6 | 9 · 4, but 6 ∤ 9 and 6 ∤ 4

n ∤ a · and n ∤ b ⇒ n ∤ ab

n ∤ a2 ⇒ n ∤ a Z 12 | 62, but 12 ∤ 6

p prime and Z[
√
−5] 2 | 6 = (1 +

√
−5)(1−

√
−5), but

p | a · b ⇒ p | a or p | b 2 ∤ (1±
√
−5)

p prime and p | a2 ⇒ p | a Z[
√
−5] 2 | (1 +

√
−5)2, but 2 ∤ (1 +

√
−5)√

2 irrational Z[
√
8]

√

8
2

= 2
√

2
2

=
√
2

Why is it true, then that
√
2 is irrational? The answer is easy: because the

fundamental theorem of arithmetic holds among the integers.
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[13] J. Kosztolányi, I. Kovács, K. Pintér, J. Urbán and I. Vincze, Soksźınű matematika
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San Feliu de Gúıxols, Spain, 2005, 448–457.

[17] A. H. Schoenfeld, Explorations of Students’ Mathematical Beliefs and Behavior,
Journal for Research in Mathematics Education 20, no. 4, 338–355.

[18] R. Zazkis and S. Campbell, Prime decomposition: Understanding uniqueness, Jour-
nal of Mathematical Behavior 15, no. 2 (1996), 207–218.

[19] R. Zazkis and S. Campbell, Divisibility and Multiplicative Structure of Natural
Numbers, Preservice Teachers’ Understanding Journal for Research in Mathematics

Education 27, no. 5 (1996), 540–563.
[20] http://www.nefmi.gov.hu/english/hungarian-national-core.
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