
16/2 (2018), 215–232
DOI: 10.5485/TMCS.2018.0451

How to teach testing?

Tibor Gregorics, Krisztián Mózsi and Rudolf Szendrei

Abstract. Testing methodology is an important part of IT education. It is desired to
show the beginner programmer students the advantage of testing by having them do
only a small amount of work. In this paper, we will show how to make testing as a
part of programming in simple exercises. These exercises are solved with the analogous
programming technique, which is based on programming theorems over enumerators. We
have elaborated grey-box test cases for the programs which have been developed based on
programming theorems. These test cases can be taught together with the programming
theorems, and they can serve as a standard testing procedure for programmers. We also
suggest a test tool to automatize test runs, and we will discuss its usage in a short case
study.

Key words and phrases: programming technology, program testing.

ZDM Subject Classification: P50.

Introduction

In the education of informatics, it is necessary for the student to know and

to be able to use software development methodology. An important part of the

methodology is to manage the complete life cycle of the software being developed.

This includes requirement analysis, the selection of the proper architecture, the

design of the software, the selection of milestones, implementation, software test-

ing (testing in short) and maintenance and, finally, documentation. [7]

Since we consider the software as a product, we must keep in mind its cost,

quality, and deadline. Quality assurance is important at all phases of software

development, and there are proper tools for it. One of the most important tools

Copyright c© 2018 by University of Debrecen

216 Tibor Gregorics, Krisztián Mózsi and Rudolf Szendrei

of quality assurance is testing, which also appears explicitly as a development

phase.

Nowadays, testing becomes more important when the size and the complexity

of a software are getting more and more enormous. In an industrial environment,

several test tools are applied to do the unit and integration test of the software.

Moreover, developer teams use version controls, issue trackers, and test environ-

ments to provide traceability to the development. Among development methods,

the agile method and the test-driven development method are getting more and

more popular in the industry. Because of this, it is particularly important for

students to learn these methods during their studies.

In the ELTE Computer Science MSc, there is a special course related to the

topic, which students should accomplish when they are close to the end of their

studies. However, it would be also important to teach BSc students the necessity

of testing and the related approach as soon as possible because this could get

students to consider testing as a useful tool.

In the next chapters, we introduce a feasible methodology for learning test-

ing in the first-year programming courses in the ELTE Computer Science BSc.

The basics of this methodology are gathered from the programming theorems

[1] [2] used to solve simple programming problem. These theorems are not only

the basics of the special programming technology which is called as analogous

programming [1] [4], but they also serve as a good starting point to collect the

potential test cases easily. We discuss this in chapter 2. In chapter 3, we show

the typical grey-box test cases [7] related to programming theorems. In chapter

4, we show an example how to design testing based on the specification if we

use the methodology of analogous programming. In chapter 5, we collect those

C++-related test tools which can be integrated and used easily in the existing

programs. Out of these tools, we also choose the one which best fits our needs.

In chapter 6, we discuss the possibilities how to adapt the suggested methodology

into practice by using the selected tool. For this tool, we also give a deeper insight

into its usage in this chapter. Finally, we summarize our experience about the

suggested methodology and the selected testing tool.

Programming theorems and testing

Programming theorems are frequently used to plan algorithms. A program-

ming theorem is a pattern, a task-algorithm pair where the algorithm solves the

task. Most programmers consider programming theorems as sample solutions.

How to teach testing? 217

When they want to construct a program to solve a problem which is like the task

of a theorem, they try to repeat the same activities which created the algorithm

of the theorem. Therefore, in this case, algorithmic thinking is supported by

programming theorems.

However, there exists another method to create programs based on program-

ming theorems. This is analogous programming. [1] [4] When students start

studying programming, this can be a good alternative to the learning of algorith-

mic thinking. In this context, the problem is decomposed into subproblems so

that each subproblem corresponds to the task of a programming theorem. After

recognizing the similarities between a subproblem and the task of a theorem, the

algorithm of the theorem can be transformed to solve the actual problem. This

concept does not need algorithmic thinking because during its application it is

needless to understand how the algorithm of the programming theorem works.

We only need to reveal the differences between the subproblem and the task of

the selected programming theorem, and then change the corresponding parts of

the algorithm. At the end, the final program can be built up from the solving

programs of the subproblems.

This kind of program designing technique helps not only to design algorithms,

but it also affects the whole life cycle of the development. This life cycle can be

divided into four steps (see Figure 1).

Analysis Design Implementation Testing
specification algorithm code

Figure 1. Steps of program development: a) Analysis, the result of
which is the specification, b) Design, which gives the required algo-
rithm, c) Implementation, which consists of coding the algorithm, the
I/O tasks, and it also creates the proper structure of the program, d)
Testing

During problem analysis, we can start thinking about which programming

theorems can be used in combination to solve the new problem. The result of the

analysis is a specification, which gives us not only the formally specified problem,

but it also refers to the solution. This executable specification is a well-known

technique used in requirement analysis of complex software. [7]

In the design phase, we must take care of only two things. We must adapt

precisely the programming theorems to the given problem parts [5], and we must

link the resulting algorithms to get the complete abstract program [3].

218 Tibor Gregorics, Krisztián Mózsi and Rudolf Szendrei

The implementation follows the same logic described above. In this step, a

traditional procedural program is made, where the corresponding subroutines of

the program are implemented as procedures or functions.

Traditionally, a simpler program can be tested under black-box strategy and

white-box strategy. [6] The black-box strategy is unaware of the internal structure

of the application to be tested and based on the specification while the white-

box strategy has access to the internal structure of the application. When the

internal structure is partially known, these strategies are mingled and we can call

it a grey-box strategy. (see Figure 2)

The black-box test cases based on the specification. Among black-box test

cases, invalid test cases form another group. This group contains those cases

where input data do not satisfy the precondition of the program. In this case,

the program should give a preprogrammed error message according to the invalid

data.

The white-box testing analyzes the program code. It can be separated in two

parts: testing the codes of the input and output handling and testing the code of

the algorithm code.

Testing

White box
testing

Grey box
testing

Black box
testing

Testing
input reading,
output writing

Testing
algorithm

codes
Testing invalid

test cases

Specification

Programming
theorems

Figure 2. Test case groups and their relations to the specification of
the problem, and the programming theorems used.

If somebody as a teacher has already dealt with the problem of how to get

students to make precise test plans, then they must know how hard it can be

for beginner programmers (and even for professional ones) to be the judges of

their own programs. Up to now, program testing has not been in our focus in the

first-year programming courses of our syllabus. We included testing strategies,

but we cannot require their application in practice.

The novelty of this paper is our discovery that the solving program of a

problem can be tested with the typical test cases of the programming theorems

How to teach testing? 219

which are applied to create the program. The test cases of a programming theorem

can be defined precisely and can be taught together with the theorem itself.

Moreover, this testing plan can be assembled during analysis since specifi-

cation introduces the theorems that help to solve the actual problem. Not only

does this kind of specification describe a problem, but it also mentions a possible

solution with programming theorems. This is called executable specification. [7]

On the one hand, the test cases deriving from the applied programming theorems

count as white-box test cases because they are based on the structure of the al-

gorithms of theorems. On the other hand, these test cases act like black-box test

cases since they are created upon specification and it is also imaginable that the

final program will not be constructed with the programming theorems referred

to in the specification. These test cases integrate the specialties of the black-box

and white-box testing: they are grey-box test cases.

If we collect and teach typical test cases for each programming theorem, then

we can establish a standard for programmers, so they will not need to make

test cases on their own. In our teaching experience, when students need to plan

their programs based on analogous programming technology and they make a

specification referring to programming theorems, they must also assemble the test

cases deriving from the applied programming theorems. This process is demanded

in lessons and in assignments, as well

Standard grey-box test cases

As we can see, it is exciting to discover and use grey-box test cases of the

corresponding programming theorems. We can get these test cases in the same

way as we get the solution during the analogous programming, in other words,

we must adapt test cases to the concrete task. The programming theorems, such

as summation, counting, maximum selection, linear (sequential) search, selection

(when the searched element must exist) and conditional maximum search accepted

by the informatics community [1] [2] have a common property: they are all built

upon an enumeration of a collection. This enumeration is mostly an interval of

integer numbers, or a set, or in many cases, it is an array, sequence, or maybe a

sequential input file. Because of this, the test cases given to the processed enu-

meration are common for all programming theorems. Perhaps, there are special

test cases which are specific to one or more programming theorems.

220 Tibor Gregorics, Krisztián Mózsi and Rudolf Szendrei

Test cases of enumeration

Boundary check of the enumeration

Is first item processed?

Is last item processed?

Is an intermediate item processed?

Based on enumeration size

empty enumeration

enumeration with one item

enumeration with many items

Table 1. Grey-box test cases related to the enumeration

It must always be checked how a solution works for enumerations of differ-

ent sizes (see Table 1). It sounds unbelievable, but a lot of programs fail on

examinations because they do not work properly on the empty enumeration. An

enumeration which contains one or two items can be an interesting test case, but

we also need to test enumerations which contain an arbitrary number of items. In

case of the counting theorem, it helps evaluating test results when all the items

satisfy the condition of counting. It is important to notice that the precondition

of the programming theorem of maximum selection requires a non-empty enu-

meration. Despite this fact, testing the program against an empty enumeration

is still required. For now, it will test the precondition of the program against an

invalid test case instead of doing a valid test of the programming theorem on a

valid input.

It is important to check whether the program processes the first and last item

of the enumeration. This is a general testing aspect which affects all programming

theorems, but we must also consider the specialties of each theorem. For example,

only one enumeration with two different items is needed for summation. Counting

also needs one enumeration with two items, where both satisfy the condition of

counting. The maximum selection theorem needs two enumerations: where the

maximum is the first item and where this is the last item. The linear search

theorem needs three inputs, where the item which we are searching for is the first

or the last one. Selection also needs two inputs, where the first or an inner item

is what we are seeking, respectively. To test a conditional maximum search, we

must check the test cases of the linear search and the maximum selection theorem.

When applying the summation programming theorem, it is necessary to do a

stress test: the maximum size of the collection must be measured, which can still

be processed by the program without any errors. Counting needs cases where

How to teach testing? 221

Test cases of programming theorems

Summation

an empty enumeration

an enumeration which contains two different items

stress test (with different large enumeration)

Counting

an empty enumeration

an enumeration containing two items, where both

satisfy the condition

the condition is satisfied by zero, one, two or many

items from the enumeration.

Selection
looking for the first item of the enumeration

looking for the non-first item of the enumeration

Linear search

an empty enumeration

looking for the first item of the enumeration

looking for the last item of the enumeration

looking for an intermediate item of the

enumeration

there is not any item, which satisfies the

condition.

Maximum selection

an enumeration with two items, where the

first is the greater one

an enumeration with two items, where the

last is the greater one

an enumeration with many items, where an

inner item is the greatest

an enumeration with many items, with many

greatest items

Conditional maximum

search
test cases of linear search and maximum selection

Table 2. Special test cases of the programming theorems

the collection contains zero, one, two, or any number of elements which have

a given property. Maximum selection must be evaluated on collections where

the maximum is an intermediate item of the enumeration, and there are several

maximum items. There are two important cases for the linear search theorem:

an item with a given property is absent or not. It is worth trying the latter case

when we search for the first or an intermediate item of the collection (note: we

222 Tibor Gregorics, Krisztián Mózsi and Rudolf Szendrei

have already checked the case when the last item was the one which we were

seeking). For the conditional maximum search, the test cases of both the search

and the maximum selection theorems should be evaluated (see Table 2).

Considering our teaching experience, grey-box test cases, which do not be-

long to any black-box group, can be recognized with the greatest difficulty. For

example, if we calculate the union of two sets, then we must check the alge-

braic properties of the union operator: commutativity, associativity, and neutral

element. It is interesting that these checks are unnecessary if we check the grey-

box test cases of the summation theorem, which uses a special kind of combined

enumerator to solve the union calculation of the two sets.

Test plan generation

In the following example, we will show how to create a test plan consisting

of standard test cases for a simple program to reveal its errors. There is a matrix

consisting of integer numbers. Choose the row which has the maximum sum of

values. Using the analogous programming technique, we choose the maximum

selection and the summation theorems to solve the task.

Specification:
Variables: (data : Zn×m, maxSumIndex : N, maxSum : Z)

Pre-condition: (data = data′ ∧ n > 0)

Post-condition: (Pre-condition ∧ maxSum =
∑n

i=1 rowSum(i) ∧
maxSum = rowSum(maxSumIndex)))

where rowSum : N→ Z
rowSum(i) =

∑m
j=1 data[i, j]

In the design phase, we must know the algorithms of the corresponding the-

orems, and we must apply the specialties of the actual task to them. After this,

we are ready to implement the concrete program. Assume that the outer pro-

gramming theorem (the maximum selection) is implemented in the maxRowSum

procedure, which takes the matrix as an argument. It also has two integer type

output parameters named maxSumIndex and maxSum, where the first will con-

tain the index and the second one the sum of the corresponding row. The inner

How to teach testing? 223

summation theorem is implemented in the rowSum function, which sums up the

values of a given row.

The declarations of the defined subroutines:

void maxRowSum(const std::vector<std::vector<int>> &data,

int &maxSumIndex,

int &maxSum);

int rowSum(const std::vector<int> &row);

In the next step, we would like to make a test plan. Now, it comes very handy

that we have used the analogous programming technique to solve the task: we

collect standardized test cases determined by the programming theorems used.

We get the following test cases: boundary and enumeration size-related checks,

the general case when the maximum item is in the middle of the enumeration,

and the case when there are several maximum items.

First, we consider the outer theorem. We must provide an invalid test case

to check the answer when the precondition is not satisfied. In this case, we do

not have many options: we have created a matrix which does not have any row.

Consider the valid grey-box test cases. In this example, the lower boundary

check of the enumeration means that we provide a matrix where the first row has

the greatest sum among the rows, and we want to know whether the program

gives the correct result or not. According to this, we create a matrix which has

only two rows and one column, where e.g. the value in the first row is 10 and the

value in the second row is 5. To run the upper boundary check, we only need to

swap the two rows, expecting the second row as maximal.

It is worth checking the results on matrices consisting of one, two, or many

rows. In the first case, the expected result is the sum of the row. For matrices with

two or more rows, we provide only one column. Concrete inputs and expected

results can be seen in Table 3.

In the special case of maximum selection, we must also check how the pro-

gram works when the row with the maximum row sum is in the middle of the

enumeration, or there are more than one row existing with the same maximum

row sum value. In the latter case, we expect that the program returns the first

possible correct occurrence. Similarly, to the previous test case, the provided

matrices have only one column.

224 Tibor Gregorics, Krisztián Mózsi and Rudolf Szendrei

Testing aspect Test input Expected result

Invalid input empty matrix programmed error message

Boundary check of

the enumeration

[
10

5

]
maxSum=10, maxSumIndex=1[

5

10

]
maxSum=10, maxSumIndex=2

Based on enumeration size

[
10 32

]
maxSum=42, maxSumIndex=1[

10

42

]
maxSum=42, maxSumIndex=2

2

1

10

3

 maxSum=10, maxSumIndex=3

Maximum value is in the

middle of the enumaration

 1

10

2

 maxSum=10, maxSumIndex=2

More than one maximum value

2

1

12

12

 maxSum=12, maxSumIndex=3

Table 3. Test plan, test cases based on the maximum selection theorem

Testing aspect Test input Expected result

Boundary check of the enumeration [1, 2] 3

Based on enumeration size
empty vector 0

[42] 42

Table 4. Test plan, test cases based on the summation theorem

The test plan we have made is not complete yet. It can be seen clearly

in the previous examples that we assumed that the inner function is also free

from implementation errors. Now, we add the corresponding test cases of the

inner function to our test plan, hoping that we can find possible defects. For the

summation, one test data is enough to check both boundaries of the enumeration:

we choose a vector which holds only two different values, expecting that the

function will return their sum. Let this vector be [1, 2]. We also need to check

the cases related to the size of the vector. It is an important assumption that

How to teach testing? 225

Tool

x
U

n
it

F
ix

tu
re

s

G
ro

u
p

fi
x
tu

re
s

G
en

er
a
to

rs

M
o
ck

E
x
ce

p
ti

o
n

s

M
a
cr

o
s

T
em

p
la

te
s

G
ro

u
p

in
g

Bandit • • • • ◦
BugEye • •
CATCH • • • • • • •
doctest • • • • • •
lest • • • • ◦
liblittletest • • • • • • •
tpunit++ • • • •
unit.hpp • • • •
upp11 • • • • • •

Table 5. The abilities of test tools consisting of only one header file.

a summation called on an empty vector returns its neutral value. If the vector

contains only one value, the summation should return that value. (see Table 4)

The enumeration size related checks include a vector with two items. Because

this case has been already checked before, we do not need to check it again.

Test tool selection

When teaching beginner programmers, it is obvious to choose a test tool which

leaves the focus on the programming instead of drawing too much attention to

its usage.

In our course, we use the C++ programming language to analogous program-

ming, so we look for a proper test tool according to this language. The list of

these tools is surprisingly long, however some tools are especially programming

environment-dependent, and most of them need complicated preparations. We

want to choose a tool which does not have to be compiled, installed, or integrated

into a programming environment after downloading. We have concentrated on

the tools which are platform independent, easy to use and consisting of only one

226 Tibor Gregorics, Krisztián Mózsi and Rudolf Szendrei

.hpp header file without any external dependencies. Keeping this in mind, stu-

dents only need to focus on choosing appropriate test cases. We have collected

tools (see Table 5) which may suit our needs1. We have chosen the CATCH tool

from this list because it is documented very well, is easy to use, and last but not

least, has more functionalities.

Usage of the Catch test tool

During implementation, a main program can be created to try out functions

already implemented. This can read input data, call implemented subroutines,

and write out results. Because this method is not the best way to create a test

environment which is easy to use and maintain, and can run automated tests, we

will use a framework instead. In the last chapter, we chose the Catch tool. To use

this tool, we need to include only one header file2, where we want to create our

own test environment. The framework simplifies the test environment creation by

generating the main entry point: if we define an empty CATCH CONFIG MAIN

macro, then a main function will be generated in the background, which will run

all the tests written by the user. It is important that, if we make several compi-

lation units, then we should use this macro only once in the project, practically

in a separate unit. Tests can be written as test cases which will be used instead

of the former main program for given inputs.

Test cases can be defined using the predefined TEST CASE macro. We must

provide each TEST CASE a unique name which describes the purpose of the

test case. Here we can also provide additional tags as a parameter to help the

categorization of tests. In the body part, after the function call, we must define

our requirements, which can also be made with built-in Catch macros. Among

these macros, the easiest ones to use are the REQUIRE and the CHECK. They

simply depend on their parameter, which is a simple logic statement (without

logic and/or operator) about the result. The difference between them is that,

if the checked condition is false, REQUIRE will abort the program while using

CHECK, we can continue. Using this basic knowledge, the tool can be used

effectively to write simple automated tests. Advanced programmers can also get

many useful functions with this tool, but we will not use most of them.

Test case 1. (a trivial test case described with the Catch tool)

1https://en.wikipedia.org/wiki/List of unit testing frameworks#C.2B.2B
2https://github.com/philsquared/Catch/blob/master/single include/catch.hpp

How to teach testing? 227

#define CATCH_CONFIG_MAIN

#include "catch.hpp"

TEST_CASE("One equals one", "[int_test]") {

REQUIRE(1 == 1);

}

Output (successful execution):

All tests passed (1 assertion in 1 test case).

If we successfully run our first ”Hello world” example, and we are sure that

the test environment works well, then we can start to develop automated tests,

describing our requirements as C++ codes. Now, we will see how to use Catch

to realize the testing of the example shown in chapter 4, based on its test plan.

Let us begin with the test of maximum selection. The code of each test case

looks similar: it initializes the input, calls the appropriate function, and verifies

the result. The initialization can also be made from a file, but in these examples,

to keep our example clear, the matrix will be defined in the code.

Test case 2. (maximum selection, lower bound check of the enumeration)

TEST_CASE("Check lower bound", "[max]") {

std::vector<std::vector<int>> data = {{10}, {5}};

int maxSumIndex, maxSum;

maxRowSum(data, maxSumIndex, maxSum);

CHECK(maxSumIndex == 0);

CHECK(maxSum == 10);

}

Output (successful execution):

All tests passed (2 assertions in 1 test case).

The upper boundary check can be made similarly. Now, we write the rest of

the automated tests based upon the test plan, so we do enumeration size related

checks: we must describe the test cases of the matrices having one, two, or more

rows.

The test cases which belong together logically can be collected into one test

case, which can be defined by the SECTION macro. The run of each SECTION

starts from the beginning of the test case, so we can create a common initialization

part to avoid code repetition. Of course, this construction can be used well only

228 Tibor Gregorics, Krisztián Mózsi and Rudolf Szendrei

if there is a significant overlap between the initialization parts of the collected

cases.

Although, in case of maximum selection, the empty enumeration counts as

an invalid input (because it violates the precondition), we can describe this case

here because it logically belongs here. An obvious method to deal with an invalid

input is that it throws an exception, but a program can also handle this situation

differently. Our selected testing tool is also able to check if the expected exception

is thrown by the function being tested for the given input.

Test case 3. (maximum selection, enumeration size related cases)

TEST_CASE("Checks by enumeration size", "[max]") {

std::vector<std::vector<int>> data;

int maxSumIndex, maxSum;

SECTION("Empty enumeration") {

REQUIRE_THROWS_AS(

maxRowSum(data, maxSumIndex, maxSum),

std::invalid_argument);

}

SECTION("Enumeration with 1 element") {

data.push_back(std::vector<int> {10, 32});

maxRowSum(data, maxSumIndex, maxSum);

CHECK(maxSumIndex == 0);

CHECK(maxSum == 42);

}

}

Tests for matrices containing two or more rows can be described similarly.

The test plan also requires test cases to cover the situations when the maximum

row sum appears in the middle of the enumeration or it appears multiple times.

Test case 4. (maximum selection, checking the interior of the enumeration)

TEST_CASE("Check the middle of the enumeration", "[max]") {

std::vector<std::vector<int>> data = {{1}, {10}, {2}};

int maxSumIndex, maxSum;

maxRowSum(data, maxSumIndex, maxSum);

CHECK(maxSumIndex == 1);

CHECK(maxSum == 10);

}

How to teach testing? 229

Test case 5. (maximum selection, multiple maximum occurences)

TEST_CASE("Check multiple maximum values", "[max]") {

std::vector<std::vector<int>> data = {{2}, {1}, {12}, {12}};

int maxSumIndex, maxSum;

maxRowSum(data, maxSumIndex, maxSum);

CHECK(maxSumIndex == 2);

CHECK(maxSum == 12);

}

Output (successful execution):

All tests passed (9 assertions in 4 test cases).

We have implemented the test cases related to the outer theorem, but the test

coverage is not complete yet. We can only say that the maxRowSum procedure

seems free from coding mistakes, but we do not have any information about the

rowSum function yet.

We write the test cases of the inner function and we add these test cases to

the automated testing. Because the inner function is based on the summation

theorem, it is enough to provide only one input to do both the upper and the

lower boundary checks of the enumeration. The cases related to the length of the

vector are described with the SECTION macro.

Test case 6. (summation, boundary check of the enumeration)

TEST_CASE("Check bounds", "[sum]") {

std::vector<int> row = {1, 2};

int sum = rowSum(row);

CHECK(sum == 3);

}

Test case 7. (summation, enumeration size related cases)

TEST_CASE("Checks by row size", "[sum]") {

std::vector<int> row;

SECTION("Empty enumeration") {

CHECK(rowSum(row) == 0);

}

SECTION("Enumeration with 1 element") {

row.push_back(42);

CHECK(rowSum(row) == 42);

}

}

230 Tibor Gregorics, Krisztián Mózsi and Rudolf Szendrei

Output (when all tests have been successfully passed):

All tests passed (16 assertions in 7 test cases).

Let us change one of our assumptions for a moment. This way, we can make

sure that the tests are running properly, and we get the expected error messages

and the exact places of the failed tests. For example, we assign false expectation

to the boundary check of the summation, and we modify the expected value from

3 to 10. By running the tests again, we will see which comparison is problematic.

Check bounds

FAILED:

CHECK(sum == 10)

with expansion:

3 == 10

test cases: 7 | 6 passed | 1 failed

assertions: 16 | 15 passed | 1 failed

Finally, we have managed to successfully cover the developed program with

standardized automated tests with which we can identify implementation errors

with a good chance. In a more complex program, the code generated with our

technique can get an important role because it can serve as its own documentation,

showing what we expect as a result from each unit of inputs given. However, we

should handle the results cautiously because they can give a false sense of safety

about the correctness of the program. Because of this, complex programs should

be reviewed.

Conclusion

When teaching beginner programmers, it is a great challenge to make students

be able to write working programs properly. In our case, the solution of exercises

is shown by using analogous programming methodology, so we solve problems

using programming theorems. This method helps not only the analyzing and the

planning of the solution but the testing, as well.

In this paper, we have sketched an analogous programming-related testing

methodology and an automatic unit-test tool. We have shown how the knowledge

of programming theorems can be built into the assembly of test cases, and how

an automatic unit-test environment could be used on a C++ platform. By using

grey-box testing, which is the mixture of white and black-box testing, we can

create well-defined test plans instead of intuitively-created ones. Thanks to this

How to teach testing? 231

method, the focus is moved from quantitative tests to qualitative tests, and we

get programs of higher quality.

In our courses, we have experienced that a significant number of programs

made by students produce wrong results for certain test cases during verification,

so we added the testing and its documentation to the assignments. After the

introduction of this new requirement, the ratio of programs working correctly

has increased. However, reading test reports, we have seen that, if test cases are

chosen mostly by intuition, then students are not always capable of revealing the

errors or deficiencies of the program.

In case of simple exercises, where the algorithm is designed with analogous

programming, the traditional white-box testing can be almost completely replaced

by grey-box testing. By checking only grey-box test cases, we can get a surprising

confidence about the correctness of the program.

Acknowledgements

The project was supported by the European Union, co-financed by the Eu-

ropean Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

References

[1] Á. Fóthi, Bevezetés a programozáshoz, ELTE Eötvös Kiadó, Budapest, 2005.

[2] T. Gregorics, Programming theorems on enumerator, Teaching Mathematics and
Computer Science, Debrecen 8, no. 1 (2010), 89–108.

[3] T. Gregorics, Abstract levels of programming theorems, Acta Universitatis
Sapientiae, Informatica 4, no. 2 (2012), 247–259.

[4] T. Gregorics, Programozás 1.kötet Tervezés, ELTE Eötvös Kiadó, Budapest, 2013.

[5] T. Gregorics, S. Sike, Generic algorithm patterns, Proceedings of Formal Methods in
Computer Science Education FORMED 2008, Satellite workshop of ETAPS (2008),
141–150.

[6] R. Patton, Software testing. Second Edition, SAMS, 2005.

[7] I. Sommerwile, Software Engineering. Eighth Edition, Pearson Education Limited,
2007.

TIBOR GREGORICS

EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS

HUNGARY 1117 BUDAPEST, PÁZMÁNY PÉTER SÉTÁNY I/C

E-mail: gt@inf.elte.hu

232 T. Gregorics, K. Mózsi and R. Szendrei : How to teach testing?

KRISZTIÁN MÓZSI

EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS

HUNGARY 1117 BUDAPEST, PÁZMÁNY PÉTER. SÉTÁNY I/C

E-mail: mozsik@inf.elte.hu

RUDOLF SZENDREI

EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS

HUNGARY 1117 BUDAPEST, PÁZMÁNY PÉTER SÉTÁNY I/C

E-mail: swap@inf.elte.hu

(Received April, 2018)

